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1 Statement of the problems studied.

In this research project we studied two very important problems in probability and
statistics. The first one is a problem in the theory of large deviations with applications
to studying robustness of statistical procedures, efficiencies and the bootstrap resam-
pling method. More specifically, we have established the large deviation principle for
a sequence of probability measures {y,} on a product space ; x {22 when the corre-
sponding sequences of marginal and conditional distributions possess the large deviation
property. We have used this result to study the large deviation behavior of the boot-
strap resampling procedure. And also used the result to study robustness of location
parameter tests in contaminated normal populations via Bahadur slopes and efficiencies.
The second problem is concerned with the statistical analysis of longitudinal data. In a
seminal paper Liang & Zeger (1986, Biometrika 73, 13-23) introduced the generalized
estimating equations (GEE) as a statistical tool for analyzing longitudinal data. The
GEE method uses a generalized quasi-score function to estimate the regression param-
eter, and moment estimates for the correlation parameters. Recently, Crowder (1995,
Biometrika, 82, 407-410) has pointed out some pitfalls with the estimation of the cor-
relation parameters in the GEE method. In this research we developed an alternative
estimation procedure which overcomes those pitfalls. This alternative method is known
as the Quasi-least squares (QLS) since it uses a partial minimization, based on the prin-
ciple of (generalized) least squares. Below we will give a brief outline of the technical |

details of the work done under this contract.

2 Summary of the most important results.
2.1 Large deviations for joint distributions.

Let Q be a Polish space, that is, a complete separable metric space and B be the Borel
o-field on Q2 containing all the open and closed subsets of Q. A function I(z) : Q — [0, oo]

is said to be a rate function if it is lower semi-continuous. Let {u.} be a sequence of




probability measures on (€2, B). We say that {,un} obeys large deviation principle (LDP)

with rate function I(z) if the following conditions are satisfied:

(1) limsup > log ua(C) < ~I(C)
() liminf ;l-log 1n(G) > ~I(G)

for all closed sets C and for all open sets G of Q. The rate function I(z) is known as a
proper rate function if for each L > 0, the level set {z : I(z) < L} is a compact subset of
Q. Let (4, By), (R, By) be two Polish spaces with their associated Borel o-fields. Let
{1} be a sequence of probability measures on (£, B;) and {v,(z1, B2)} be a sequence
of transition functions on ; x B,. Consider a sequence of probability measures {,} on

the product space (2, B) = (1 x Q2, By ® B;) given by

(B x By) = [ valar, By) dyna(m) :

for B, € B;, i = 1, 2. We say that the sequence of probability transition functions
{Va(z1, +), 71 € S} satisfies the LDP continuously in z; with rate function J (%1, Z2),

or simply LDP continuity condition holds, if

(i) For each z; € Q, J(z1,-) is a proper rate function on (.

(ii) For any sequence {z1,} in ©; such that z,, — i, the sequence of measures
{Va(Z1n, -)} on Q; obeys the LDP with rate function J(z,, -), and

(iii) J(z1, ) is jointly lower semi-continuous in (z1, Z2).

Our main result can be stated as follows. Suppose that the sequence {u1,} obeys
the LDP with proper rate function I)(z;) and the sequence of probability transition
functions {v,(zy, ), z1 € )} satisfies the LDP continuously in z; with rate function
J(z1, z2). Then the sequence of joint distributions {5} obeys the LDP with rate func-

tion I(z1, z2) = Ii(z1) + J(z1, 2). There are several interesting applications of this
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theorem in statistics. In particular the theorem shows that the joint distribution of the
ordinary empirical measure of a sample and the corresponding bootstrap empirical mea-
sure obeys the LDP in the weak topology. Other applications include establishing the

LDP property for several sampling distributions that arise naturally in statistics.

2.2 Bahadur slopes of tests in contaminated models.

One of the most basic problems in statistics is to test a null hypothesis concerning
the location parameter assuming that we have a random sample of n observations from
a normal population. Several test statistics are candidates for this testing problem: the
mean test, the ¢ test, the sign test and the Wilcoxon test. Among these test statistics,
it is well known that the t-test is uniformly most powerful unbiased test if the normality
assumption holds. But it is not clear that the ¢ test will continue to be most powerful
if there is a departure from normality. To study the robustness of these tests, it has
been a standard practice to examine the performance of these tests under the Tukey
model of contaminated alternatives. Under the Tukey model the sample consists of i.i.d.

observations from the density
f(z) =1 —¢€) ¢(z; 6, 1) + ed(; 6, 0).

Here ¢(z; 6, o) denotes the probability density function of a normal random variable with
mean 6 and standard deviation 0. And € is a number between 0 and 1 representing the
proportion of contamination. Two measures which are .commonly used to compare the
large sample properties of these tests are the Pitman efficiencies and the Bahadur slopes.
Several authors have examined the robustness of the aforementioned test statistics, by
computing the Pitman efficiencies. But not much work was done as regards to the

computation of Bahadur slopes and efficiencies, since it is much harder problem.

The problem of deriving the Bahadur slopes is not an easy task and depends heavily

on the theory of large deviations. In fact the problem of calculating the Bahadur slopes of

_ test statistics provided the impetus for the development of large deviation theory. Both




the establishment of the LDP for a sequence of distributions and the identification of the
rate function are essential for explicit calculations of Bahadur slopes. As an important
application of the large deviation result described in Section 2.1, we have obtained the
Bahadur slopes of the four test statistics in the Tukey model. From an examination of
these slopes, it appears that the Wilcoxon test is the best performer in a neighborhood
of the null hypothesis, even under the presence of moderate contamination, but is not

the best performer uniformly over the whole region of the alternative hypothesis.

2.3 Quasi-least squares.

The statistical analysis of longitudinal discrete and continuous data has become an ac-
tive research topic in recent years. Several books on the topic have also been published.
Such data naturally occur when repeated observations are taken on individuals, or the
data is taken on clusters or groups of subjects sharing similar characteristics. In a sem-
inal paper, Liang and Zeger (1986, Biometrika, 73, 13-22) introduced the generalized
estimating equations (GEE) for analyzing longitudinal data. The main idea of Liang
and Zeger (1986) is to model the dependence among the repeated measurements on each
subject in the form of a “working correlation matrix” which is assumed to be a function
of a vector « of parameters. An estimate of « is obtained using the Pearsonian residuals.
The GEE method has become so popular that the 1986 article of Liang and Zeger has
been included in Volume 3 of “Breakthroughs in Statistics.” But recently Crowder (1995,
Biometrika, 82, 407-410) has pointed out some pitfalls with the estimation of the corre-
lation parameters in the GEE method. First the estimate of o based on the Pearsonian
residuals may not fall within the set of feasible values, leadingl to a complete breakdown
of the estimation procedure. Second, even if it is feasible, it may not be consistent and
it is subject to an uncertainty of definition which can lead to loss of efficiency of the
regression parameter estimate. Furthermore, there can be no general asymptotic theory
supporting existence or consistency of the joint distribution of the regression and the

correlation parameter estimates.




In this research project we discovered a new approach for estimating the correlation
parameter which overcomes all of the above pitfalls. We call this new approach as
the Quasi-least squares (QLS) method. Not only does the QLS method yields feasible
estimate for the correlation parameter ¢, it has several other advantages. For some
commonly employed working correlation structures we have closed form solutions for the
estimate of the correlation parameters. When the correlation matrix is unstructured, the
QLS estimate of the correlation matrix involves a new factorization of a positive definite
matrix. This factorization does not have a closed form solution, and in this research
we have developed a recursive algorithm to obtain the factorization. Unlike the GEE
method the QLS method can accommodate a wide range of correlation structures that
are useful to analyze unbalanced and unequally spaced longitudinal data. While the
QLS estimate of the regression parameter is consistent and asymptotically normal, the
estimate of the correlation parameter is asymptotically biased. In this research we also
obtained a modified QLS estimate of the correlation parameter which is consistent and
asymptotically normal. For the structured correlation matrices the modified estimate is
not only consistent but also robust among the popular working correlation structures.
We have also developed some extensions of our results to analyzing multivariate repeated

measurements.
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LARGE DEVIATIONS FOR JOINT DISTRIBUTIONS AND
STATISTICAL APPLICATIONS”

By NARASINGA R. CHAGANTY
Old Dominion University, Norfolk

SUMMARY. We obtain the large deviation principle (LDP) of a sequence of probability
measures {un}ona product space 0, x Q2 when the corresponding sequences of marginal and
conditional distributions possess LDP’s. This is the large deviation analogue of the results of
Sethuraman [Sankhyd A 23 1961, 379-386) for weak convergence. Our large deviation result
for probability measures on product spaces re-establishes the main theorem of Dinwoodie and
Zabell {Ann. Probab. 20 1992, 1147-1166] as a simple consequence, and also generalizes the
LDP for product measures in Lynch and Sethuraman {Ann. Probab. 15 1987, 610-627). Our
main theorem is useful to establish the LDP for several statistical distributions. For example
we show that, under bootstrapping, the ordinary empirical measure of a sample and the
corresponding bootstrap empirical measure, jointly possess the LDP in the weak topology.
Other applications include the LDP for_noncemral t-distributions and parametric bootstrap
methods. : )

1. Introduction

Let Q be a Polish space, that is, a complete separable metric space and B
be the Borel o-field on Q containing all the open and closed subsets of Q. A
function I(z) : & — [0, oo] is said to be a rate function if it is lower semi-
continuous. Let {un} be a sequence of probability measures on (Q, B). We say
that {un} obeys the weak large deviation principle (WLDP) with rate function
I(z) (see for e.g., Lynch and Sethuraman (1987), Deuschel and Stroock (1989))
if the following conditions are satisfied:

Paper received. July 1996; revised April 1997. ’

AMS (1991) subject classifications. Primary 60F10, 62G09, 62F05, 62G30.

‘Key words and phrases. Large deviations, empirical measure, bootstrap, Bahadur slope,
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* Research partially supported by the U. S. Army research office grant numbers DAALO3-91-
G-0179, DAAH04-96-1-0070. '
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(1) limsup ;ll-log pn(K) < =I(K) (1.1)

2) un;‘inf -Tl;log 4n(G) > ~I(G) .(12)

for all compact sets K and for all open sets G of Q. When {un} satisfies (1.2)
and also satisfies condition (1.1) for all closed sets C, we say that it obeys the
large deviation principle (LDP). It is clear that if {un} satisfies the LDP then -
it also satisfies the WLDP. The rate function I(z) is known as a proper rate
function if for each L > 0, the level set {z: I(z) < L} is a compact subset of
Q. Note that proper rate functions are also rate functions, since a nonnegative
function is lower semi-continuous if and only if the level sets are closed.

The following definition of large deviation tightness, extensively used in large
deviation theory, is useful when describing the parallels between weak conver-
gence and the LDP, and also in simplifying several proofs. Our definition of
large deviation tightness is same as the definition of exponential tightness in
Dembo and Zeitouni (1993).

DEFINITION. A sequence of measures {un} is large deviation tight (LD -
tight) if for each N < co, there exists a compact set Ky such that

limsup-i— log pn(Kf%) < —N. ...(1.3)
n

Let (€4, By), (D2, B;) be two Polish spaces with their associated Borel
o-fields. Let {uin} be a sequence of probability measures on (Q, B1) and
{vVa(z1, B2)} be a sequence of transition functions on Q; x B,. Consider a
sequence of probability measures {sta} on the product space ({2, B) = (1 x
Q,, B, ® By) given by

a8y x By = [ vn(er, Ba)dpn(z) (L)

for Bi€B;,i=1,2.

We say that the sequence of probability transition functions {vn(z1,-), T1 €
Q, } satisfies the LDP continuously in z, with rate function J (z1, T2), OF simply
the LDP continuity condition holds, if

(i) For each z; € 1, J(z1,-) is a proper rate function on 2.

(i) For any sequence {z1n} in.Q, such that 21p — 71, the sequence of mea-

sures
{Va(z1n, -)} on Qg obeys the LDP with rate function J(z1, -).

(iil) J(z1,z2) is lower semi-continuous as a function of (=1, x2)-




LARGE DEVIATIONS FOR JOINT DISTRIBUTIONS 149

When (i) and (ii) alone hold, we say that the sequence of transition functions
{va(z1, ), 71 € Q,} satisfies the ezponential continuity condition with proper
rate function J{z1, -), following the definition given in (1.7) of Dinwoodie and
Zabell (1992).

Suppose that the sequence {p1n} obeys the LDP with proper rate function
I,(z)) and the sequence of probability transition functions {va(z1, ), T1 € 0}
satisfies the LDP continuously in I3 with rate function J(z1, £2). Under these
conditions, the main Theorem 2.3 of this paper shows that the sequence of joint
distributions {un} obeys the WLDP with rate function I(z1, z2) = hiz1) +
J(z1, T2)- And the sequence of marginal distributions {pan(B2) = pa(S1 % B»)}
on Q, obeys the LDP with rate function Ir(z2) = infz,en, [1(z1, z,)]. Further-
more, the sequence {pn} obeys the LDP if I(z), z2) is a proper rate function.
The proof uses Varadhan’s theorem on asymptotic behavior of certain integrals.
Theorem 2.3 generalizes Corollary 2.9 of Lynch and Sethuraman (1987) for prod-
uct measures. The main theorem of Dinwoodie and Zabell (1992) also follows
from our Theorem 2.3 as a special case where p1n = p, for all n, where p is a
measure on §; with compact support.

Theorem 2.3 is useful to establish the LDP for commonly occurring statistical
sampling distributions. Both the establishment of the LDP for a sequence of
distributions and the identification of the rate function are essential for explicit
calculations of Bahadur slopes and Chernoff indices. With this in view we
{llustrate the usefulness of our theorem by obtaining the LDP for the noncentral
t-statistic and identify its rate function. As another application, we will use our
theorem to show that the joint distribution of the ordinary empirical measure of
a sample and the corresponding bootstrap empirical measure obeys the LDP in
the weak topology. We also give explicit form for the rate function in terms of the
Kullback-Leibler number. The preceding applications are not covered neither by
the results of Lynch and Sethuraman (1987) nor by the results of Dinwoodie and
Zabell (1992). Other important applications of our main theorem to establish
the LDP for sample path processes can be found in Section 3.4 of Zajic (1993).
Our theorem is also useful to establish the LDP for the t-statistic based on
" a random sample from a contaminated normal distribution, see Chaganty and
Sethuraman (1997a, 1997b). :

There is a long history of parallels between weak convergence and the LDP.
Section 2 of Lynch and Sethuraman (1987) showed systematically the parallels
between several results in weak convergence and in large deviations. This was
followed by summary table in Vervaat (1988) listing further parallels. Recently,
Puhalskii (1991) has carried the parallelism to Prokhorov’s criterion by showing
the equivalence of large deviation tightness and the existence of subsequences
possessing the LDP. Our main theorem shows that the parallelism extends to
the theorems in Sethuraman (1961) for weak convergence of joint distributions
in terms of the convergence of marginals and conditional distributions. Some re-
sults similar to ours in the context of capacities can be found in Gerritse (1995).

The organization of this paper is as follows: In Section 2 we prove the main
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theorem of this paper after stating some known theorems in large deviation
theory. In Section 3, we show that a new interpretation of a theorem of El-
lis (1984), provides sufficient conditions for the LDP continuity condition to
hold for a sequence of probability transition functions defined on an Euclidean
space. We also present examples of statistical distributions where the LDP
continuity condition is satisfied. In Section 4, we establish the LDP for some
sampling distributions that arise in statistical theory.

2. Preliminaries and Main Result

In this section we state and prove the main theorem of this paper. We will
first present some known results in large deviations which are needed in the
proof of our main theorem. The interrelationship between the LDP, WLDP and
LD tightness is given in the following lemma, a proof of which can be found in

Lynch and Sethuraman (1987), Dembo and Zeitouni (1993).

LEMMA 2.1. Let {un} be a sequence of probability measures defined on a
Polish space Q. Then the following hold: '

(1) If {#a} is LD tight and obeys the WLDP with rate function I(z) then
I(z) is a proper rate function 'and {pn} obeys the LDP with proper rate
function I(z).

(2) If {pn} obeys the LDP with proper rate function I(z), then {pa} is LD
tight. '

The following theorem due to Varadhan (1966), plays an important role in
the proof of our main theorem. The special case of Theorem 2.2, where F = F,
‘Vn, and F is a bounded continuous function, is widely quoted in large deviation
theory, and is known as Varadhan’s theorem on the asymptotics of integrals.
See Ellis (1985), Lynch and Sethuraman (1987). Theorem 2.2 is simply a com-
bination of Theorems 3.2, 3.3 and 3.5 in Varadhan (1966), and is useful in the
proof of our main theorem.

THEOREM 2.2 (Varadhan). Let be a Polish space. Let {p1n} be a sequence
of probability measures on (Qi, By). Assume that {p1n} obeys the LDP with

proper rate function Li(z1)- Let {Fa(z1)} be a sequence of real valued functions
and F(z,) be another real valued function. Let

=.(B1) = /B ezp(nFa(z1)) dp1n(z1) @)

for By € By. Then the following hold:
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(1) Assume that there erists a constant L < oc such that Fa(z1) < L for
ell n, zy € Q. Suppose that limsup, Fa(zin) £ F(z,) for any sequence
Zin — L1 Then

. 1 _ '
hmnsup - log Za(C1) < sgg [F(z1) - I(z1)] ..(2.2)

for any closed subset C1 of Q.

(2) Suppose that liminfa Fa(z1n) 2 F(z,) for any sequence Tin = z,. Then

liminf{ : log Ea(G1) 2 SUP [F(z1) - I(z1)) ...(2.3)
" n £,€G1

for any open set G, of -
We now state the main theorem of this paper.

THEOREM 2.3. Let (S, B,), (92, B,) be two Polish spaces with their associ-
_ated Borel o-fields. Let {m1n} be a sequence of probability measures on (., B1)-
Let {va(z1, B2)} be a sequence of probability transition functions defined on
Q, x Ba. Suppose that the following two conditions are satisfied:

(a) {pin} obeys the LDP with proper rate function Li(z1)-

(b) {valz1, B,)} obeys the LDP continuity condition with rate function
J(z1, T2)-

Then the sequence of joint distributions {pa} grven by (1.4) on the prod-
uct space @ = Q, x 2, obeys the WLDP with rate function I(z1, 1) =
Ii(zy) + J (21, z,). And the sequence of marginal distributions {pan} 0beys the
LDP with rate function I(z2). Moreover, {pn} satisfies the LDP if I(z1, Z2)
is a proper rate function. '

We will first prove 2 simple lemma.

LEMMA 2.4. Let Iy(z1) be a proper rate function on & and J(z1, 72) be @
rate function on Qy x Q2. Then

Ig(rg) = inf [11(21) + J(z1, Iz)} ces (2.4)
. €M
is a rate function on Q,.
ProoF. Let L > 0 be fixed. It suffices to-show that the set M = {z2 :

I(z2) < L} 1s closed. Let {z2n} € M be such that z2n — %2 Choose 2
sequence {zin} such that

1 1 -
L(z1n) + J(T1n, Z20) S In(z2n) + - < L+~- v ..-(2.3)
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Since J(z,, z) is a nonnegative function, (2.5) implies that Li{zyn) £ L+1
for all n > 1. But the set {z1 : I(z1) < L+ 1} is compact, and therefore
there exists a subsequence {z},} of {z1a} such that zj, — zj as 7 — o0 Since
J(zy, z2) is lower semi-continuous in (z;, z2), from (2.5) it follows that

I(z3) < L(z})+J(z1, 22)
< liminf Li(z1,) + limninf J(z3n) Ton) ...(2.6)
< L.

Thus z3 € M. This completes the proof of the lemma. O

ProOF OF THEOREM 2.3. We first note that I(z1, z,) is a rate function on
Q. We will need this fact below in (2.10). Using Varadhan’s theorem we will
establish the upper bound (1.1) for closed rectangular sets. Let C) and C; be
closed subsets of ©; and Qg respectively. If Fa(z1) = 11og [va(z1, C2)] then

ua(C1 x C2) = /c va(z1, C2) dpin(z1)
‘ | L (27)
= /c: exp(n Fa(z1)) dp1n(z1)-

Note that Fn(z;) < 0 and limsup, Fa{z1n) € =J(z1, C.) whenever 1, — :ri.
Thus by Theorem 2.2 (1), we get '

limsup ;11- log pn(C1 x C2) = lim sup;ll-log ; exp(nFa(z1)) dp1n(z1)

S g e+ e GO
= -I(C x C2)
...(2.8)

and therefore the upper bound (1.1) for closed rectangular sets. In particular
choosing C; = Q in (2.8) we get

L. 1 ..
limsup - log pan(C2) < —1(Q x C,) = —(C2)- ...(2.9)

Let K C Q = O x Q, be compact and | < I(K). For each (z1,z2) € K,
since I( - ) is lower semi-continuous, there are open sets O, in § containing zi,
i = 1, 2 such that

I(OL, x O2,) = inf{I(y1, y2) : (v1,92) € ol x 03} >! ...(2.10)
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Furthermore, since Q; is Polish, we can find open subsets N} of O%. such that

z; € N} and N, CO;,. Consider the open covering Uz, z2)eK N} x N2 of

K. Because K is compact we can extract a finite subcovering UL, NI‘U. x N2,

. . ——r . . - ] -—2
for K. Since N, is closed and K is a subset of UL, N . x N_ . we get
v 1= Zyj T2j

: 1 . . 1 — —
lim sup ~ log un(K) < 1x(r;ag(mhmsup = log p,,(Ni”. X Ni,,-)
< -~ min {1'('1_\1-l x N )}
= Taggel U ..(211)
. 1 2
< - 12}2""{1(0:” X Oz;,-)}
S . —I)

for each | < I(K), and hence limsup, n~! log pn(K) < ~I(K). This shows
that {un} satisfies (1.1) for any compact set K. We proceed similarly to obtain
the lower bound. First using Varadhan’s theorem we show that the lower bound
(1.2) holds for any open rectangular set and then deduce (1.2) for any open set.
Now let G; be open in &; for i = 1,2. We can write

(G x G2) /G (21, Ga) dsin(z)

| .. ,(2.12)
= fo exp(n Fn(zl)) d‘“"(:l)

where Fa(z1) = 2 log{va(z1. G,)]- Since liminf, Fa(z1n) 2 F(z1) = -J(z1, G2)
for any sequence Zin — T1, using Theorem 2.2 (2), we get

1 ‘ 1 :
liminf ;log pn(G1x G2) = liminf;log exp(nFa(z1)) dpin(z1)
n n G]

> - inf (h()+ (=1, Go)
= —I(G1 X Gz)
..(2.13)
Choosing Gy = § in (2.13) we get

lirr;‘inf-l’;log 42n(Ga) 2 ~I( x G2) = ~12(G2)- .(2.14)
Now let G be an open set in Q x Q. Fixe>0 and choose (z1, z5) satisfying

I(z1, z2) < I(G) + €. There exist open sets Oz, in Q; containing i, i = 1,2
such that Oz, x 0z, CG. Thus :
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liminf—lr; log pn(G) > liminf;lz- log #n(Oz, % Oz,)

> —I(z1, T2) ...(2.15)

v

-I(G) — ¢

Since € > 0 is arbitrary, this establishes (1.2) for any open set G. Thus {gn}
obeys the WLDP. From (2.9) and (2.14) and Lemma 9.4 we can see that {s2n}
obeys the LDP with rate function I>(z2)-

Let us now assume that I(z1, z2) is a proper rate function. By the Contrac-
tion principle (see Appendix), Iz(z2) is also a proper rate function. Therefore
{u2n} obeys the LDP with proper rate function Io(z2) and hence it is LD tight.
By Lemma 2.1 (1), the last assertion of Theorem 2.3 will be established if we
show that {p,} is LD tight. Since {pin} is LD tight, given N < oo, we can find
. a compact subset K; of Q; such that

lim sup %mg pin(KE) < =2N, . (2.16)

for i = 1, 2. Hence there exists ng such that
pin(K§) < exp(—nN) ...(2.17)

fori= 1,.2 and n > ng. Let K = K, x K3, which is compact in {21 X 5, being
the product of two compact sets. For n 2 no from (2.17) we get

pa(K€) < pia(KT) + VZn(K;)
...(2.18)
< 2exp(—nN)

which implies that : v
* limsup ;log pn(K) < =N ' ...{2.19)

This completes the proof of Theorem 2.3. O

REMARK 2.5. It is interesting to note that {pzn} satisfies the upper bound
(2.9) for closed sets and the lower bound (2.14) for open sets, even if J(z1, z2)
is not lower semi-continuous in (1, 22)- The lower semi-continuity of J (z1, 22)
as a function of (z1, Z2) 18 needed to show that I>(z2) is a rate function.

We shall now give some sufficient conditions on the rate functions [;(z,) and
J(z1, £2) which guarantee that I(z;, z2) is a proper rate function.

LEMMA 2.6. Let @ and 2 be two Polish spaces. Let J : Q=0 x2—
[0, 0] be a function satisfying the following conditions: :
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(a) The function J(z1, T2) 1S lower semi-continuous in (Z1, z7)-

(b) The set Uz ek, {z2 : J(z1, z2) < L} is a compact subset of Q2 for any
L >0 and for any compact set Ki of Q.

Let I,(z)) be a proper rate function defined on Q and let I(z1, z2) = Ii(zy) +
J(zy, T2)- Then the following hold:

(1) For each 1 € Q,, J(zi1, -) 1s a proper rate function on Q2.

(2) I(z, z2) 1s @ proper rate function on Q.

PROOF. It is easy to see that conditions (a) and (b) imply that J(zy, -)is 3
proper rate function on Q2 and I(z1, T,) is lower semi-continuous. We proceed
to show that I(z1, z2) has compact level sets. Fix L > 0 and let

M = {(z1, z2) : (=1, z7) < L} ...(2.20)

Note that M is 2 closed subset of  since I(zy, £2) is lower semi-continuous.

" Let Ky ={z1: L(z) & L}. Tt iseasy to verify that

Mckix |J {z2: (=22 < L}. ...(2.21)
£, €Ka

Since K, is compact, the set on the right hand side is compact by condition (b)-
Thus M is compact being a closed subset of a compact set. This completes the
proof of the Lemma 2.6. O

Suppose now that Q, be a locally compact, separable metric space and
J(-, z2) is lower semi-continuous on Q, for each z2 € Q,. Lemma 2.7 be-
low shows that if J(z1, z,) satisfies condition (b) of Lemma 2.6, then it is lower
semi-continuous as 2 function of (21, Z2)- Thus in this case where Q is R%, we
need only verify that J(zy, z2) is lower semi-continuous in z, for fixed Z2, and
satisfies condition (b) to conclude that I(z, T2) is a proper rate function.

LEMMA 2.7. Let @ be a locally compact, separable metric space and 2 be
a Polish space. Let J(z1, z4) be a nonnegative function on the product 'space
Q = Q; x N2 such that J (-, z2) is lower semi-continuous on Q, for each z2 € Q»
and condition (b) of Lemma 2.6 holds. Then J(z1. z,) is lower semi-continuous
on §2.

ProoF. We first note that €, is a Polish space, since a locally compact

" metric space is topologically complete (see Dugundji (1970); Corollary 2.4 page

994). Let L > 0. It suffices to show that M = {(z1, 22) ° J(z1, z2) S L} s
closed in . Note that we can represent the set M as '

M= (=) x M) ..(2:22)

€M
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where M., = {z2 : J(z1, z2) < L}, for 21 € . Let (z1n, T2n) be a sequence
of points in M such that (Zin, T9n) — (2}, 73) as n — oo Since Q; is locally
compact there exists K11 D Ky, ---, a countable, compact neighborhood base
of z}. Now for each j > 1, we can find n; such that zin € Kyj for all n > nj.
Thus we have for n > n;,
zm € |J M: ...(2.23)
z,€Kyj

which is a compact set by hypothesis (b). Hence z3 € Uz, ek, ; Mz, for allj > 1.
Since J(-, z2) is lower semi-continuous in the first coordinate we can verify that

o0

N U Mz =My ..(2.24)

j=lx;€K;, i

which implies that =3 € Mz, that is, (3, z3) € M. This completes the proof .
of the lemma. O ' :

REMARK 2.8. Assume that {p1n} obeys the LDP with proper rate function
I,(z;). Suppose that the transition functions va(z1, B;) = pan(B2), do not
depend on z; and {p2n(B2)} obeys the LDP with proper rate function given
by I2(z2). Then it trivially follows from Theorem 2.3 that the sequence of joint
distributions {pn} obeys the LDP with proper rate function

I(Il, :L'z) = 11_(2.'1) + Iz(:tg), .. (225)

a result originally obtained by Lynch and Sethuraman (1987); see Corollary 2.9
in their paper.

REMARK 2.9. Theorem 2.3 of Dinwoodie and Zabell (1992) can be deduced
from our Theorem 2.3 as follows : Suppose that pin = pVn and the support of
p, say S(p) is compact. Then it is easy to see that the sequence {p1n} obeys
the LDP with proper rate function :

[0 ifz €Sk
I‘(")"{ o otherwise. .--(2:26)

Simply put, a single measure {u} always obeys the LDP with the above rate
function. Further the rate function defined in (2.26) is a proper rate function if

~and only if the support S(u), of the measure y, is compact. With this choice of
{pt1n = p} under the conditions of Theorem 2.3 of Dinwoodie and Zabell (1992),
it follows from our Theorem 2.3 that the sequence of marginal measures {p2n}
obeys the LDP with rate function I2(z2) = infz es(p) J(zy, z2)-
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3.  LDP Continuity for Probability Transition Functions on R4

In this section we will examine sufficient conditions for the LDP continu-
ity condition to hold for an arbitrary sequence of probability transition func-
tions defined on an Euclidean space. Dinwoodie and Zabell (1992)‘ have given
some sufficient conditions for exponential continuity in the case where §; is a
first countable topological space, Q, is a locally convex Hausdorff space and
va(z1, B2) is the distribution of the average of n i.id. random vectors. How-
ever their sufficient conditions are very restrictive. Even in the simplest case
where Q; is the real line, their sufficient conditions are not satisfied for averages
of i.i.d. random variables from basic statistical distributions, see Remark 3.7
below. '

We will first discuss a method of verifying the exponential continuity condi-
tion for an arbitrary sequence of transition functions, by giving a new interpre-
tation to a theorem of Ellis (1984).

Let ©, is a Polish space and for each z; € 01, let {va(z1, )} be a sequence
of probability transition functions on Q2 = Rd2. We can verify that the expo-
nential continuity condition holds for the sequence {vn(Z1, ), z1 € 1}, using
a theorem of Ellis (1984) as follows: Let {zin} and z be in Q, such that
zyn — Z1. Let {Y.} be a sequence of R%: valued random variables such that
the distribution of Y, /n is given by Vn(Z1n, - ). Define -

cn(Zin, t) = i—log E[exp(< t,Y, >)] ...(3.1) .

Suppose that lim, cn(Z1n, t) exists and equals c(z), t), for allt € R%, where we
allow +00 both as a limit value and as an element in the sequence {e(z1ns )}
Let Dz, (c) = {t eR® @ c(z1,8) < oo}. The function ¢(z1, 1) . R¥2 — R issaid
to be closed if {t : c(z1,t) £ a} is closed for each real a. This is equivalent to
c(zy, t) being lower semi-continuous. If c(zy, t) is differentiable on the interior
of Dz, (c), then we call c(z1, t) steep if || grad(c(z1, ta)) ll— 0, for any sequence
{t.} C int(Dx,(c)) which tends to a boundary point of D.,(¢). Forz2 € R4,
let

J(zy, z2) = sup [<t, 22> —c(z1, t)], T L..(3.2)
teR4%2

be the Legendre-Fenchel transform of ¢(z1, t).

~ THEOREM 3.1 (Ellis). If Dz, (c) has a nonempty interior containing the point
1=0 and c(z;, t) is a closed, convez function of R% then the function J(z1, )
defined in (3.2) is a proper rate funclion on R4z gnd the sequence of probability
measures {vn(Z1n, )} satisfies the upper bound (1.1) for all closed sets C of R®?
with proper rate funclion J(z1, -). Furthermore, if c(zy, t) 15 differentiable on
all of interior of D.,(c) and is sleep then the sequence of probability measures
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{va(z1n, -)} satisfies the lower bound (1.2) for all open sets G of R with proper
rate function J{zy, ).

The next lemma due to Dinwoodie and Zabell (1992), (see Lemma 3.1 (1)
in their paper), provides a simple sufficient condition for the function J(z1, z7)
defined by (3.2) to be lower semi-continuous in (z,, z2). Note that Theorem 3.1
in conjunction with Lemma 3.2, provides sufficient conditions for a sequence
of probability transition functions on an Euclidean space, to satisfy the LDP
continuity condition. '

LEMMA 3.2. Let {z1,} be a sequence and {z,} in Q, be such that z1p — Z1.
If for everyt € R332, there ezils a sequence tn —1 such that

limsup c(Z1n, ta) < (21, 1) ...(3.3)

then the function J(zy, z2) defined by (3.2) is lower semi-continuous in (21, T2)-

We will now present a number of examples where the LDP continuity con-
dition holds. In Examples 3.3, 3.4, 3.5 and 3.6 below, Y, is the sum of n i.i.d.
random variables Xi,..., Xn- Furthermore, the common distribution 7y of the
X;’sis indexed by a parameter 9 € ;. Hence the function defined by (3.1),is in-
dependent of n, but depends on the parameter 9 and therefore we shall denote it
by c(8, t). Inall of the four examples, it is easy to verify that ¢(8, t) as a function
of t is closed, convex and steep, for fixed 0 € Q,. Clearly, ¢(0, t) is continuous in
9 for each t in these examples and therefore condition (3.3) is trivially satisfied.
Let the distribution of the sample mean X, = Yo /n be given by va(8, -). Thus
it follows from Theorem 3.1 and Lemma 3.2, that the sequence of proBabiliLy
transition functions {vn(8, -), ¢ € }, in all of the four examples, satisfies the
LDP continuity condition with rate function J(8, z) = sup,erlzt — (6, t)]. We
will omit details and present only the distribution 7g, the function (8, t) and
the rate function J(8, z) in the examples below.

In Examples 3.3, 3.4, 3.5 and 3.6, the random variables are defined to be
degenerate, when 8 is a boundary point of €. In (3.8) and elsewhere in this

paper we let Olog =0

ExaMPLE 3.3. Let Xy,...,Xn be i.i.d. normal with mean 6 and variance
8,. If we let 8 = (61, 62) then g € Q = (—00, ) x [0,00). It is easy to verify
that

(9, i)=91‘t+-;-87t2, —o <t <oo, ...(3.4)

for € ;. The.sequence of probability distributions of the sample means {Xn}
satisfies the LDP continuity condition with rate function

(z - 61)?

—-5-9—2——, -0 < z2< 00, (35)

J(, z)=
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for 8 > 0, —o0 < ) < 05 and

0 ifz=91

oo otherwise

78, z) = { ...(3.6)

when 8, = 0 and —oo < 6, <.

ExaMpLE 3.4. Let Xi,..., Xn be iid. Bernoulli with ean 8.0 € QL =
[0, 1]. The function c(8, t) is given by

c(8, t) = log [ exp(t) + (1-9)]. —00 <t <00 ...(3.7)

for 8 € Q;. The sequence of probability distributions of the sample means {Xa)
satisfies the LDP continuity condition with rate function

.z 1-z) .
- - <z<
J(6,2) = zlog9+(1 z)log ) f0<z<l .(38)
o0 otherwise,
for g e Ql.
1

ExaMmpLE 3.5. Let Xi,.. ., Xn be iid. fo(z) = 7T (a) exp(—z/8) o=
>0, a>0and €N = [0, 00). Then for any 8 € Q, we have

o8, 1) = { —alog(l—0t) ift< 1/6 ...(3.9)

00 otherwise.

The sequence of probability distributions of the sample means {Xn} satisfies
the LDP continuity condition with rate function ‘

oo otherwise.

J8,z) = {%["*‘0’9(105(09)—1—-10g(z))] ifz>0,

for each 6 > 0; and .
10, 2) = {0 ifz=0

co otherwise.
' ...(3.10)

In the special case where a = 1/2 and 8 = 2, the distribution of nXn is x3(n)-

Thus if Ya is x?(n), then {Ya/n} obeys the LDP with proper rate function

J(z):{ %[z—l—log(z)] ifz>0 ..(3.11)

o0 otherwise.

ExaMpLE 3.6 Let Xi,.. X, beiid. fa(z)=10 exp(8(z — 1)), TS H and
9 €, = (0, o). The function c(8, t) is given by

(0.1) = { t 4 +log(6) — log(6 +1) if8+1>0 312)

0 otherwise.
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Then {X.) satisfies the LDP continuity condition with rate function

J(0, z)={ o — 2) — log(8(u —z) =1 Mz <k (3.13)

0 otherwise,

for 8 > 0.

REMARK 3.7. Dinwoodie and Zabell (1992) considered Example 3.6 re-
stricting the parameter space Q, to [fo, o) where 8o > 0 and showed that the
exponential continuity condition is satisfied for {X.} using 2 sufficient condi-
tion, which they attribute it to de Acosta, see (3.9) and Example 3.3 of their
paper. We can verify that de Acosta’s condition is not satisfied for the full
family in Example 3.6, even though the exponential continuity condition holds.

4. Statistical Applications

Application 4.1. LDP for noncentral 1-distributions. In Section 3 we have
seen that the LDP continuity condition is satisfied for the probability distribu-
tions of averages of i.i.d. random variables from basic statistical distributions.
In this section, we will demonstrate with an example that Theorem 2.3 can be
used to show that the LDP holds for other statistical distributions derived from
the basic statistical distributions. More specifically in Example 1.1. we show
that the noncentral t-distributions obeys the LDP and identify its rate function.
The rate function for the central (-distributions was derived by several authors
including Sievers (1969), Bahadur (1971), Killeen et-al (1972) and more recently
by Berk (1982) and Singh (1989) for the noncentral t-distributions using differ-
ent methods.

ExaMPLE 4.1. Let Xi,...,Xn be ii.d. normal with mean ¢ and variance
1. Let X = Yooy Xi/n be the sample mean and S22 =Y i (X -X)?/(n-1)
be the sample variance. ‘Let Q; = (0, 00) and Q; = (-0, o0), which are
topologically complete and separable metric spaces. Let Th = 7/\/§,2_, be the
noncentral t-statistic. Note that (n — 1)S2 is distributed as x? with (n-1)
degrees of freedom and hence S2 obeys the LDP with proper rate function

1
B = ls—1-legl)] (4.1)
for s € . Let va(s, -) be the conditional distribution of T given S =
s > 0. Since va(s, -} is just the normal distribution with mean 0/+/s and

variance 1/(ns), by Example 3.3 we have that {va(s, ), s € Q,} satisfies the
LDP continuity condition with rate function

J.(s,t)=i(‘_:_%/_@_2-, fogt<o (4.2)
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for s € ;. We can easily verify that the rate function Jy(s, t) in (4.2) satisfies
condition (b) of Lemma 9.6. Therefore it follows from Theorem 2.3 that the
joint distribution of (S2. Tn) satisfies the LDP with proper rate function

Is(s, t) = Li(s)+ Je(s, t), s>0, —00 <t <00 ...(4.3)

Furthermore, the marginal distribution of T, obeys the LDP with proper rate
function :

I(1)

= lenrg [11(5) + Jo(s, i)]
= 32% [(s —1—log(s))/2 + (tvs - 0)2/2] - (44)
which after simplification reduces to
LYY= -;—[92 — stf — 2log(s)], —oco<t< o0, ...(4.5)

where s is the positive root of the quadratic equation s2(14+t2)—std - 1= 0.
Thus for any measurable subset A of the real line we have

—~I,(A%) < liminf -:l- log Pr(Ta € A) £ limsup -:'; log Pr(Tn € A) < ~I(A).

...(4.6)
The above inequality (4.6) was established by other authors, using complex an-
alytical calculations, when A is an interval of the form A=[t,0),t>0.

Application 4.2. Bootstrap Empirical Measure. The resampling procedure,
known as the “bootstrap” introduced by Efron (1979) has become very popular
in statistical methodology in recent years. "A formal description of the method
is as follows: Let E be a Polish space and ©; be the class of all probability
measures defined on the collection of all Borel subsets of E endowed with the
topology of weak convergence. It is well known that (@i, p) is a Polish space,
where p is the Lévy- Prohorov metric, see Deuschel and Stroock (1989), page
64. Fix P € Q. Let X = (Xl,...,X,,) be a sample of n ii.d. observations
from P. Let P, be the empirical measure based on X, that is, }3,.(3) is simply
the proportion of Xi’s, 1 < i < n, with values in the Borel set B of E. Given
X = x, the bootstrap method is to take a random sample of n i.i.d. observations
X* =(Xi,...,Xs) from ‘P,. The bootstrap empirical measure P, is defined as
the empirical measure of the bootstrap sample X*. As an important application
of Theorem 2.3, we will show that the sequence of joint distribution of the
empirical measure P, and bootstrap empirical measure P, obeys the LDP with
proper rate function that depends on the Kullback-Leibler number. For Q,
P €M, the Kullback-Leibler number is defined as

K(Q. P) = { f%: log gdP fQ<<P L (4T)

otherwise
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where ¢ is the Radon-Nikodym derivative of Q with respect to P.
The next theorem is the main result of this section.

THEOREM 4.2. Let y be the class of all probability measures on a Pol-
ish space E endowed with topology of weak convergence. Fir P € Q. Let
Xy,..., Xn be ii.d P. Let Pn be the empirical measure based on X1,-- -1 Xn-

-~

Let P, be the empirical measure of the bootstrap sample X7,..-» Xa Then the
joint distribution of (Pn, P,) obeys the LDP in the weak topology with proper
rate function '

K((Q1,Q2), P) = [K(Q2, Q1) + K(Q1, P)}. ...(4.8)

ProoF. We will prove the theorem by simply verifying the conditions of
Theorem 2.3. Let Q, = Q, be the class of all probability measures on E. Then
Q, and Qg are complete separable metric spaces. By Sanov’s theorem (see
Theorem 3.1 in Chaganty and Karandikar (1996)), we have that P. obeys the
LDP with proper rate function I1(Q1) = K(Qu, P). Let va(Q1. B2) = Pr(P. €
Bglﬁn = Q,). It follows from Theorem 3.1 and Theorem 2.5, both in Chaganty
and Karandikar (1996), that the sequence of transition functions {va(Q1, B2)}
satisfy the LDP continuity condition with rate function J(Q1, Q,) = K(Qa2, Q)
where Qi € i, 1= 1, 9. Thereforc using Lemmas 43,26 and Theorem 2.3 we
can conclude that the sequence of joint distributions of (Pn, Pn) obeys the LDP
with proper rate function

K((Q, @), P) = [L(Q)) + J(Q1, Q2))
= [K(Qi, P)+K(Qz Q) .- (49)

[K(Qz, Q1) + K(Q1, P)l.

This completes the proof of the theorem. O

The next lemma shows that K(Q, P) satisfies condition (b) of Lemma 2.6,
thus establishing that the function (4.9) is indeed a proper rate function. The
proof of the following Lemma 4.3 is similar to the proof of Lemma 2.3 (2) in
Groeneboom et al (1979).

LEMMA 4.3. Let My be a compact setAon, in the weak topology and L > 0.
Then the set

M,={Q€e: KQ R <L for some RE M} ...(4.10)
is also compact 1n the weak topology.

PrOOF. Let € > 0 be given. Let a > 0 be such that (L+1/e)/loga < €f2
and let § = ¢/(2a). Since M, is compact we can choose a compact set v=V
in E such that

R(VE) < é forall ReM,. ...(4.11)




- Now

LARGE DEVIATIONS FOR JOINT DISTRIBUTIONS 163

Let Q € M, and R € M, be such that K(Q, R) < L. Let g be the Radon-
Nikodym derivative of @ with respect to R. Since z log(z) > —1/e for z > 0,
we have

/ glog gdR < L +1/e. . (4.12)
{g>a}

Q(vVe)

i

/ gdR + /  gdR
ven{g<a) ven{g>a)

< aR(VE)+ E_é_; f{g>a} glog gdR ...(4.13)

IN

ab+ e <e/2+¢/2=¢.

loga
Therefore we have
Q(V)<e forall Q€ My, ...(4.14)

which implies that M2 is compact. This completes the proof of the lemma. Q
By Theorem 2.3 we can also conclude that the marginal distribution of P,
satisfies the LDP with proper rate function

K*(Q, P)= inf [K(Q, R) + K(R, P)}. ...(4.15)

It is interesting to note that K(Q, P) 2 K*(Q, P)forallQ, P € (equality
holds iff P = Q). Thus the rate function of the ordinary empirical measure
P, is always greater than the rate function of the marginal distribution of the
bootstrap empirical measure Pn.

Application 4.3. Parametric Bootstrap. Let X;,...,Xn be i.i.d.. random vec-
tors with distribution given by ns indexed by the parameter 8 € Q; C R4, where
€, is a Polish space. Let b, = Ta(X1,.. .+ Xn) belonging to ) be an estimate
of 4. In parametric bootstrap method, given 8, = z1, the bootstrap sample is a
sequence of i.i.d. observations X;,...,X; from 7;,. Let 8, = Ta(X7,--» X2)
be the estimate of 8 based on the bootstrap sample (X7,..., Xn). Suppose that
5,, satisfies the LDP continuity condition with rate function J (0, z;), 7 €RY.
Then by Theorem 2.3 it follows that the joint distribution of (5,,, 8,) satisfies
the LDP with proper rate function '

1(8. (z1, 22)) = U (0. 21) + J (21, 22)]. . ...(4.16)
Also, the marginal distribution of 8, satisfies the LDP with proper rate function
I(8, z2) = lenrg (79, z) + J(z, 27)]- ...(4.17)

It is interesting to note that J(0, z) > I2(0, z) for all (8, z), that is the rate
function of the marginal distribution of 0, is always less than the rate function
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of the distribution of 8,. We now present 3 couple of examples. In Examples 4.4

and 4.5 it is easy to check that for each fixed 6, the rate functions J (8, z1)’s are
continuous, convex functions of z; and jointly lower semi-continuous in (8, 21)-
Furthermore, J(0, z;)’s also satisfy condition (b) of Lemma 2.6.

EXAMPLE 4.4. Let Xi.. .., Xn beiid. Bernoulli with parameter e =
[0, 1]. Let 8, = Xn where X, is t}\e sample mean. Let X;, . Xa be i.1.d.
Bernoulli with parameter 23 given 8, = 21 Let 8, = X, be the estimate of 0
based on the bootstrap sample (X7, -+ X2). It follows then from Example 3.4

and Theorem 2.3 that the joint distribution of (5,,, 0,) satisfies the LDP with
proper rate function

16, (21, 22)) = (8, z21) + J(21, )] 7..(4.18)

where J(8, z) is given by (3.8). The marginal distribution of 9, also satisfies
the LDP with proper rate function

I8, z2) = ‘eiﬁt:l][.'](o. z) + J(z, 22)). ...(4.19)

EXAMPLE 4.5. Let X1,.-, Xn beiid. exponential with mean 1/6, that is,
the common pdf is given by fa(z) = fexp(—0z), 2> 0, 9 € Q, = (0, 00). Let
5,, = 1/7(-,,, where Xn is the sample mean. Given 5n =z, let (X{,...,X;) be
ii.d. f:(z). Let 8, = X, be the mean of the bootstrap sample. It follows then
from Example 3.5 and Theorem 2.3 that the joint distribution of (5,., 8,) obeys
the LDP with proper rate function

(22(6 + 22) = 2 — log (0 2% 22)] if 2y >0,22>0,
0 ‘otherwise,

1(8, (z1, 2)) = {
...(4.20)

for 8 > 0. The marginal distribution of g, also obeys the LDP with proper rate
function ‘

10, 22) = { [210g((8 + 22)/2) — logl? z)] ifzn >0 ..(4.21)

o0 otherwise,

for 8 > 0.
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Appendix

The following result, known as the contraction principle, is a very useful
device to deduce the LDP for a sequence of measures induced by a continuous
function from a sequence of measures which are known to obey the LDP. An
extension of the contraction principle for measurable functions h can be found
in Puhalskii (1991).

Contraction principle. Let h : @ — Q" be a continuous function where Q
and Q° are two Polish spaces. Let I be a proper rate function on 2. Then
I"(y) = inf{z: a(z)=y} () is 2 proper rate function on Q. Suppose that {un}
is a sequence of probability measures on Q which obeys the LDP with proper
rate function I. Then the sequence {ps = pn h™1'} obeys the LDP with proper
rate function I”. ' -
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Abstract

In this paper we derive the exact Bahadur slope of the t-statistic based on a random sample from a contaminated
normal distribution, using some results in large deviation theory. We also present a table of exact Bahadur slopes at
various alternatives at several levels of contamination.

AMS classification: primary 62F03; 62F05; 62G35; secondary 60F10

Keywords: Bahadur slope; Large deviations; Robustness; Tukey model

1. Introduction

To study robustness of standard tests of location in a normal model, one generally studies their proper-
ties under the Tukey model (see Tukey, 1960) of contaminated normal alternatives, namely, the probability
distributions P g,) With probability density function (pdf)

Jie0.0)(x) = (1 = &)9(x;6,1) + e¢(x; 6, 5) . ' (1)

for 0 <& <1, where ¢(x;0,0) is the pdf of a normal distribution with mean 6 and variance o2,

Suppose that X},X3,...,X, is a random sample from f{.g,5)(x) and that we wish to test the null hypothesis
6 = 0 versus 6 >0, using the t-statistic T, = \/nX,/S,, where X, = (1/n)3__, X; and S = (1/n) S0, (Xi —
X,)*. The robustness of this t-test as measured by Pitman efficiency has been studied in the famous Princeton
study by Andrews et al. (1972). In this paper we derive the large deviation rate function of T, under P o o)
which allows us to obtain the exact Bahadur slope of the t-test under a general alternative Pe6.0) 0 > 0.
Following the practice of other authors, we set ¢ equal to 3, and give the exact Bahadur slopes for various
values of ¢ and 8 in Table 1. This table gives an indication of the region' of robustness of the t-test as
measured by the exact Bahadur slope. The robustness of the t-test, in the sense of Bahadur efficiency, is

* Corresponding author. Partially supported by the US Army research office grant no. DAAH04-96-1-0070.
! Partially supported by the US Army research office grant no. DAAH04-93-G-0201.
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gleaned by comparing the slope at the contaminated distribution Pic.6,3) with the slope at the uncontaminated
distribution P g,3). As expected, Table 1 shows that there is adequate robustness in a region of small values
of & Furthermore, for a fixed 6 the slope is a decreasing function of ¢ and for a fixed ¢ the slope is an
increasing function of 8.

The exact distribution of T under P ,) has been derived in Lee and Gurland (1977). We will derive
the large deviation rate function of 7, under P o, and the exact Bahadur slope under the alternative P, o ,,
~in Section 2. "

2. Large deviation rates and Bahadur slopes

We refer to the excellent monograph of Varadhan (1984) for an introduction to the theory of large deviations
and to the monograph of Bahadur (1971) for the concept of Bahadur slopes and efficiencies. One needs
a strong law under the alternative and a large deviation result under the null hypothesis to obtain the exact
Bahadur slope. It is easy to see from the usual strong law of large numbers that

—T"——>m(t:90')——6——— : )
YA P T

with probability one under P g,). We need to obtain a result of the form

1 T,
~ 10g Fz0.0) (7";-1 ?’"> = —(m), , 3)

where y(m) is continuous in m, which is usually referred to as the large deviation rate function of 7T,. It then
follows that the exact Bahadur slope of T}, equals

c(e,6,0) = 23(m(e, 6, 0)). (4)

We now proceed with the derivation of y(m). Note that the event {T?/n=m?} is equal to the event {W, =20}
where W, is the quadratic form W, = X'AX/n with 4 = J — nal, a = m*/(1 + m?), I is the identity matrix
and J is a matrix of ones. Since the distribution of T, is symmetric under £, ), we have

T, 1
—=2zm|= =0).
P (ﬁ m) SP(H,0) (5)
(From here onwards, P without a suffix corresponds to the probability under Pi,0,0).) The logarithm of the
probability in (5) can be approximated (see (19) and (20) below) by using the moment generating function
(mgf) of W, which is given by

n -1/2
M,(t) = E[exp(tW,)] = Z (:)(1 —e)ken=bir — %AkA , (6)
N k=0
k n—k

ety

. . 2 9 . . .
where 4; = diag(1,...,1,0%...,0°). Let p =k/n and ¢ = 1 — p. Using a matrix determinant formula (see

the appendix), we can show that

-1/2

P f3(1) +qfn(t)f4(t)>‘”2

2t
Mou(r) = ]1 -~ A0SO

= (/i)™ (fa(e)) ™ (

O
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where fi(¢) = 1 + 2at, fH) =1+ 2at6?, fi(t) = - 2t(1 —a) and f4(t) = 1 = 2ta*(1 ~ a). Thus, the mgf
of W, is given by -

n

Mn<r>=z<:)(1_E)ka<"-*>M"k<t> for te(p) <t <t*(p), ®)

k=0

where tx(p), t*(p) are the roots of the quadratic equation. pf>(¢) f3(¢t) + g f1(¢) fa(¢) = 0.

From the above formula for the mgf M,(t), we can conclude that the distribution of W, is a mixture
distribution. More precisely, let X be a binomial random variable with parameters n and (1 — ¢). Given
K =k, let Uy be a random variable with mgf given by My.. From (8) we can see that W, is equal in distri-
bution to Uyx. This observation coupled with a theorem of Varadhan, see Theorem 2.2 in Chaganty (1993),
is useful to derive the large deviation rate function for the random variable #,. Theorem 1 below shows that
the conditions in Varadhan’s theorem are indeed satisfied in our problem.

Theorem 1. Let K be a binomial random variable with parameters n and (1 — £). Given K =k, = np,, let
Ui, be a random variable with mgf, My (t), defined in (7). If p,— p then

Fi(pa) = 5 108 P(U, 20)  F(p) 25 11— o0, ©)
where F(p) = ~3 [plog fi(t*(p)) + qlog fo(t*(p))]. g =1 - p.
Proof. Upper bound: By Chebyshev’s inequality it follows that
lim"sup ’—11 log P(Un, 20) < li’rln % log M, (2) |
= 3 [plog fi(1) + qlog £(1)] (10)
for any 0 <t < t*(p). Hence,

lim sup F,(pn) = limsup % log P(Upi,, =0)
. 1
inf —> [plog fi(t) +qlog fo(1)]
O<t<t*(p) 2
= F(p). an

Lower bound: Let Gu, denote the distribution function of Uy . Let us introduce another random variable
V» with the conjugate distribution function given by '

<

QB (x) = 22 46 () (12)

_ Mnkn(tn)
where t, = t*(p)(1 - (1/n)). Now for any & > 0 we have
o0 o <)
P 30) = [ d6u() = Mu () | exatoste) i, 29
0 0
" né
3 M) [ expl—xt) b, )
0

= My, (tn) exp(—ndt, )P(0 < V, < nd). : (13)
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Therefore,
1 1 l
- log P(Upr, 20) = - log M, () — 8ty + - log P(0K ¥, <nd). (14)

Since p,— p as n— ¢ it follows from (7)

1
~ 1og M. (1) — =3 [P10g fi(r*()) + 4108 fo(4*(p))] = F(p), (15)

We will now show that the limiting distribution of ¥;/n is a translated gamma distribution. To find the limiting
distribution, we first note that the mgf of ¥,/n is given by M,(s) = M, (5n)/Mur,(ts), Where s, = t, + s/n.
It is easy to check that v

* 1/2
M,(s) — M(s) = exp(—sc) (t*t(p(_)p-zs> as n — oo, (16)

for s < t*(p), where ¢ = [ap/(1 + 2at*(p)) + aqa?/(1 + 2at*(p)a?)]. Thus, ¥,/n converges in distribution
to ¥V — ¢, where ¥ is a Gamma random variable with shape parameter 1/2 and scale parameter 1/t*(p).
Therefore,

P(OsV,,/nsé)—»}‘D(csVsc+5)>0 as n—o0. an
From (14), (15) and (17) we get
limninf Fi(pn) = limninf % log P(Wy, =0)=F(p) — 6t*(p).
Since ¢ is arbitrary we get liminf, F,(p,) = F(p). This completes the proof of the theorem. O
We are now in a position to derive the large deviation rate function y(m) of T,. From Theorem 1 we have,
1
Fo(pn) = ;logP(W,lzolK="Pn)—-*F(p) (18)
whenever p,— p. Note that
1 1 ' .
~ log P(W; >0)= - log | exp(nF(2)) dn(p), (19)
where u, is the distribution of K/n. Since the distribution of K is binomial, it is known that the sequence’
of probability measures {y,} obeys the large deviation principle (see Varadhan, 1984 for the definition) with
rate function
h(p) = plog(p/(1 —¢)) + qlog(g/¢).
Using the theorem of Varadhan, see Theorem 2.2 in Chaganty (1993), and (18) and (19) it follows that

2 logP(#,20)  sup (F(p)— h(p)). | | 20)

O<p<

From (5) and (20) we get

%logP(—% >M) — ~y(m),
where y(m) = info< p<1[-F(p) + h(p)].
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Table 1

Slope of the t-statistic ¢(¢, 6, d), for the contaminated normal model, when ¢ = 3

e 8=025 6=0.50 =10 =15 =20 .9=2.5 =30
0.00 0.06062 0.22314 0.69315 1.17865 1.60944 1.98100 ©2.30259
0.05 0.04487 0.17380 0.56738 0.99565 1.39154 1.74207 2.05046
0.10 ~ 0.03509 0.14056 0.48860 0.87952 1.24944 1.58306 1.88034
0.15 0.02865 0.11598 0.42937 0.79694 1.14852 1.46908 1.75733
0.25 0.02090 0.08422 0.33264 0.67161 1.00633 1.31239 1.58918

The rate function y(m) can easily be computed numerically using Newton-Raphson method. In Table 1
we present the exact Bahadur slope, c(e,0,0) = 2y(m(e, 8,5)), for different values of ¢ and 6 when ¢ = 3.
Note that a large value of c(¢,6,0) indicates that the test statistic T, requires smaller sample size to detect
that particular alternative. The Bahadur efficiency of the t-test with respect to the competing nonparametric
Wilcoxon test in the Tukey model has recently been obtained in Chaganty and Sethuraman (1996).

Remark 1. It is possible to derive, in a similar manner, the exact Bahadur slope of the t-statistic, for
a random sample of n observations with common pdf given by f(x) = Zf;, m;9(x; 0, 0;), Zf=l =1,
and m; > 0 for all L>1. In this case the multinomial distribution plays the role of the binomial distribution
in the derivation of the slope. More generally, using the results of Chaganty (1993), we can also establish
the large deviation principle for the t-statistic for this model.

Appendix

In (7) we have used the following determinant formula. Let
k (n=k)
Y ot Vo N
S = bl+cJ o
- eJ dl+el|

where b, ¢, d and e are constants, and as before, / is the identity matrix and J is the matrix of ones. Then
we can verify that

4+ ——

b d

To obtain the simplification in Eq. (7), we use the above formula (A.1) with the substitutions b = S0, v
d = fi(t), c = —2t/n and e = ~2ta?/n.

(A.1)

18| = tatr=H (1 L U ")e> .
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The Large Deviation Principle for Common
apatistical Tests Against a Contaminated Normal

e

N. Rao Chaganty and J. Sethuraman

Old Dominion University, Norfolk, VA
Florida State University, Tallahassee, FL

Abstract: We examine the performance of the standard tests—the mean test,
the t-test, the Wilcoxon test and the sign test—for testing that the measure of
central tendency of 2 distribution is zero. We do this by comparing the Bahadur
slopes in a contaminated normal model. We first establish the large deviation
principle (LDP) and then calculate the Bahadur slopes for the standard test
statistics when the observations come from a contaminated normal distribution.
An examination of tables of Bahadur efficiencies reveals that the Wilcoxon

test outperforms other tests in 2 neighborhood of the null hypothesis, even -

in the presence of moderate tontamination, but not. uniformly over the whole
alternative hypothesis.

Keywords and phrases: Bahadur slope, large deviations, Pitman efficiency,
robustness, Tukey model. Wilcoxon test

16.1 Introduction
One of the most common testing problems encountered in statistics is testing
Ho:6=0 vS. H, :6>0

where 8 is a measure of central tendency. For simplicity, one makes the as-
sumption that the sample forms an i.i.d. sample from 2 normal distribution
with unknown variance. In this case, the t-test is known to be the uniformly
most powerful unbiased test. Other tests that have been proposed include the
mean test, the sign test, and the Wilcoxon test. Examining the robustness of
these tests against departures from this model has been the subject of a large
number of papers; seé Staudte (1980) and the books by Andrews et al. (1972),

239




240 -N. Rao Chaganty and J. Sethuraman

Huber (1981) and Tiku, Tan and Balakrishnan (1986), and more recently by
DasGupta (1994). It has been the standard practice to examine the robustness
of these tests in the famous Tukey model [see Tukey (1960)], which models a
certain form of departure from normality. Under the Tukey model, the sample
consists of i.i.d. observations from the density

foca(z) = (1 —€) ¢(z;6,1) + €6(z:6,0). (16.1)

Here o(x;0,0) denotes the probability density function of a normal random
variable with mean 6 and standard deviation o, and € € (0, 1) represents the
level of contamination.

Two measures which are commonly used to compare the large sample per-
formance of tests are Pitman efficiency and Bahadur efficiency. In Andrews
et al. (1972), Huber (1981) and Lehmann (1983, Chapter 5), robustness was
measured by Pitman efficiency, which is obtainable by comparing asymptotic
efficacies of tests. In this paper, we measure the robustness of these tests by Ba-
hadur efficiency, which is obtainable by comparing Bahadur slopes. We present
some tables showing the Bahadur efficiencies of the Wilcoxon test relative to
other three tests. From an examination of these tables, it appears that the
Wilcoxon test is the best performer in a neighborhood of the null hypothe-
sis, even under the presence of moderate contamination, but is not the best
performer uniformly over the whole region of the alternative hypothesis.

The concept of Bahadur slope can be briefly described as follows. Let

Xi,...,Xn beiid., whose distribution depends on a parameter ) taking values
in a set A. The parameter A can be a vector like (8, ¢,0) as occurs in our prob-
lem. Consider the problem of testing the hypothesis that A liesin a subset Ag of
A. For each n, let T, be a real valued function of the sample {X1, X2,..., X n}s
such that large values of T, are significant for testing the null hypothesis. For
any A and ¢, let '

Fat, ) =P(Ta<t) (16.2)
and
Gn(t) = inf{Fn(t, A) : X € Ao}. | (16.3)
If Ao were a singleton, then Fa(t, A) and Gq(t) are equal; otherwise, the sig-
nificance probability of a test based on T, is obtained from Gn(t). In fact, the
level attained by T is

Lo(Ty) = 1 = Ga(Th). (16.4)

The rate at which Ln tends to zero when a non-null ) obtains is a measure of the

discriminating power of the sequence of test statistics {Tn} in discriminating’
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that \; see Bahadur (1960. 1967, 197 1). The sequence of test statistics {Tn} is
gaid to have exact slope ¢(A) when ) obtains if

lim_ % log Ln(Ts) = —é e(\) as. [P (16.5)
It is only the values of ¢(\) for A € A\ Ao that are of interest, with larger values
indicating that the alternative hypothesis A is discriminated better. In general,
it is a nontrivial matter to determine the exact slope of a given sequence (T}
A convenient and frequently used method to obtain Bahadur slopes is due to
Bahadur (1967) and can be stated in the form of the following theorem.

Theorem 16.1.1 Suppose that for each A € A \ Ao,
lim T, =b(\) as. [P (16.6)

n—x

where —o0 < b(\) < 0o, Suppose that for A € Ao

1 '
nh_’rréo; log Ln(s) = —I(s) as. [P2) - (16.7)
for each s in an open interval which includes b(X), and I(s) is a positiveA con-
tinuous function on that interval. Then, the ezact slope of {T,} exists for each
A€ A\ Ap and equals c(X) = 21(b(N))-

In practice, verification of condition (16.6) is easy and usually follows from
a strong law of large numbers. However, a large deviation theorem is needed
to establish (16.7) and is usually the difficult part. For sums of i.i.d. random
variables, one can use Cramér’s or Chernoff’s theorem [see Theorem 3.1 of
Bahadur (1971), for instance] to establish (16.7). For statistics with completely
general structure, it is more convenient to use the main theorem of Ellis (1984)
to establish (16.7). We will use both these methods in this paper. '

We will now briefly give the definition of the large deviation principle and
state the main theorem of Ellis (1984).

A function I(s) : R¥ — [0, ool is said to be a rate function if it is lower semi-
continuous. For any subset A, we write I(A) = inf{I(s) : s € A}. Let {un}
be a sequence of probability measures on (R, B). We say that {un} obeys the
large deviation principle (LDP) with rate function 1(s) [see Varadhan (1984)]
if the following conditions are satisfied:

limsup%log u(C) < -IC) (16.8)

1imninf%log u(G) 2 -I(G)  (169)

for all closed sets C and for all open sets G, respectively, of RE. The rate func-
tion I(s) is said to be a proper rate function if it further satisfies the condition
that the level set {s: I(s) < L} is a compact subset of Rk, for each L 2 0.
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Let {T,} be a sequence of Rk valued random variables with distribution
given by the sequence of probability measures {un}. Define

Sir

cnlt) = = log Elexp(< t, n Ty >)]. (16.10)
Suppose that lim, cq(t) exists and is equal to c(t), forall t € REK. where we allow
both ca(t) and c(t) to take the value +o00. Let D(c)-= {t € R* : c(t) < o0}.
The function ¢(t) : R¥ — R is said to be closed if {t : c(t) < a} is closed for
each real a. This is equivalent to c(t) being lower semi-continuous. If ¢(t) is
differentiable on the interior of D(c), then we call ¢(t) steep if | grad(ta)) ||— oo
for any sequence {t»} C int (D(c)) which tends to a boundary point of D(c).
Let

I(s) = sup [< t, s> —c(t)], - (16.11)

teRk

for s € R* be the Legendre-Fenchel transform of c(t). The main theorem of
Ellis (1984) can then be stated as follows.

Theorem 16.1.2 (Ellis): If D(c) has a nonempty interior containing the
point t=0 and c(t) is a closed convez function of Rk, then the function I(s)
defined in (16.11) is a proper rate function on R¥ and the sequence of probabil-
ity measures {jin} satisfies the upper bound (16.8) for all closed sets C of R¥
with proper rate function I (s). Furthermore, if c(t) is differentiable on all of
interior of D(c) and is steep, then the sequence of probability measures {un} sat-
isfies the lower bound (1 6.9) for all open sets G of RE with proper rate function
I(s). /

16.2 LDP for Common Statistical Tests

Let X1, X2,...,Xn be a random sample from the distribution (16.1). In this
section, we will first establish the LDP for the commonly used test statistics
for testing the hypothesis Ho : 6 = 0 vs. H, :0>0. The LDP results for the
Wilcoxon and t-statistics are new. We do this even though the full force of the
'LDP is not required to calculate Bahadur slopes.

We will consider four test statistics—the mean test, the t-test, the Wilcoxon
test, and the sign test—the last two of which are nonparametric tests.

Mean test. The test statistic (under the assumption that the population

- 1 &
variance is known) for the mean test is Tin = Xn = - Z Xi. Under the null
) i=1

hypothesis Ho : 6 = 0, we have
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cinlt) = = log Elexp(ntTin)
2 2/ 2 _
= t—g— + log {(1 —€) + € exp (t——-——(az 1))]
= ¢(t) (say), —oo<i<00, (16.12)

is independent of n. It is easy to verify that the function ci(t) is a closed
convex function on the real line, and satisfies the hypothesis of Theorem 16.1.2.
Therefore, Tin obeys the LDP with proper rate function

Li(s) = sup [st—ci(t)

—oo<t<co

= sts—cilts) (16.13)
where t satisfies the equation § = ci(ts), which simplifies to
2/2 (1 _ _ 212/2 (o _t.52) =
ed/2 (1 —€)(s—ts) H €€ (s —ts0°) =0. (16.14)

The above equation (16.14) can be solved numerically using the Newton-Raphson

method. :

Sign test. Let Yi-= 1if X;>0and ;=0 if X; <0. The nonparametric sign
n

. .. 1 .
test is based on the statistic Ton = - ZY{. Note that the random variables
1

1=
Y;’s are i.i.d. Bernoulli with mean 1/2 under the null hypothesis Ho:0=0.1t
is well known, and can also be alternatively derived from Theorem 16.1.2, that
Tyn obeys the LDP with proper rate function given by

) log(2) + slog(s) + (1 —3) log(1—s), if0<s <1
h(s) = { 00 otherwise. (16.15)

Wilcoxon test. Arrange |X tlyeees1Xnl in increasing order and assign ranks.
Let U; be the sign of X; where |X;| has rank i. The Wilcoxon statistic is

equivalent to
1 n
Ty = —— 2 iUi- (16.16)

The following theorem generalizes a result of Klotz (1965) and gives the LDP
for the Wilcoxon statistic. ‘
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Theorem 16.2.1 Let E,; denote the expected value of the ith smallest order
statistic from a sample of n observations with distribution function G on (0, co)
satisfying [3° zdG(z) < oo. Let U1 be independent such that P(U; = £) = 1/2

fori=1,2,...,n and let Sp = ZE'" U;. Then, {Sn} obeys the LDP with
1=1
proper rate function given by

I(s) = sup [st - /0 log(cosh(zt)) dG(z)| . (16.17)
) _
PROOF. From Theorem 1 of Hoeffding (1953), we have for each t € R
can(t) = % log Elexp(nt Sy))
n

= 1 Z logcosh(t Eni)]
n = o
- /0 log(cosh(t z)) dG(z) = ca(t) (say) (16.18)

as n — oo. It is easy to check that the function c3(t) satisfies the conditions of
Theorem 16.1.2. Theorem 16.2.1 now follows from Theorem 16.1.2. | |

Note that under the null hypothesis § = 0, the random vanables Uy,...,Unin
(16.16) are i.i.d. symmetric Bernoulli. Alsoin (16.16), En; = 7y isthe expected
value of the ith smallest order statistic from a random sample of n observations
distributed uniformly on (0, 1). Therefore, conditions of Theorem 16.2.1 apply
with G as the uniform cdf on (0, 1). Let

c3(t) = /01 log|cosh(t z)] d, —00 <t < 00. (16.19)

Using Theorem 16.2.1, we can conclude that T, obeys the LDP with proper
rate function

Is(s) = sup [st = ca(t)]
= stg—c3(ts) (16.20)

where t, is the solution of the equation

s = ca(t)
1
= /xtanh(t:c)dx
0 .
17 log(l+exp(—?.t)) 1 & k41 €xp(—2tk)
= 3 up? Tt VT T

(16.21)
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Equation (16.21) can be solved numerically using the Newton-Raphson method.
By substituting an alternate expression for c3(t) obtainable from (16.19) using
integration by parts, we can rewrite (16.20) as

I3(s) = 23t3—log(cosh(t5)) (16.22)

where ts is the solution of the equation (16.21).

n

— 1 _—
t-test. Let X, and S;"l = EZ(X" - Xn)2 be the mean and variance of the

i=1 .
sample. The t-statistic is simply defined as Tun = Xn/Sn. The LDP for the
t-statistic does not follow from Theorem 16.1.2. However, we can establish
the LDP for the t-statistic using a recent large deviation theorem of Cha-
ganty (1997). Let K, be distributed as Binomial with parameters 7 and (1—¢).
Let Z1,Zo,..- be iid. N(0, 1) and Y,,Ya,. .. beiid. N(0, o), independent of
K,. Let Z, and Y, be the sample means and let S%, and Sgn be the sample
variances of a sample of . observations from 7 and Y, respectively. Note that

" Tyn is equal in distribution to the statistic
Pn -ann +(1- Pn) 7n(l—P.‘)
P Stap, + (1~ Pa) S2a-py T Pn (1= Po)(Znp. — Yrn(1-Pw)

where Pn = Ka/n. It is well known that 7. obeys the LDP with proper
rate function hi(z) = z%/2 and Y, obeys the LDP with proper rate function
ho(y) = y? /202, Also, §2, and Sgn obey the LDP with proper rate functions
ha(u) = fu—1- log(u)]/2 and ha(v) = ['u/cr2 -1 —log(v Ja®)/2, respectively.
Conditional on Pn = P the variables {-Z—npn, 7n(1_pn), Sgan Sgn(l—P,\)} are
all independent. Using Corollary 2.9 in Lynch and Sethuraman (1987) and
Example 3.11 in Chaganty (1997), we can see that this conditional joint distri-
bution obeys the LDP continuity condition in p with proper rate function given
by hi(z) + ha(y) + ha(u) + ha(v)- See Chaganty (1997) for the definition of the
LDP continuity condition and the contraction principle in that connection. It
follows from that contraction principle that the conditional distribution of Tan
given P, = p also satisfies the LDP continuity condition in p with proper rate
function given by

J(p.s) = inf [ha(z) + ha(y) + ha(u) + ha(v)].

pz+{(1—ply
2,y,4,0) S=
( YU B ) ‘/pu.*.qu-}p(l—P)(‘_y)z

(16.23)

From the LDP for binomial distributions, P, obeys the LDP with proper rate
function given by hs(p) = plog(p/(1— €))+(1-p) log((1-p)/e)- It then follows
from Theorem 2.3 of Chaganty (1997) that Tin obeys the LDP with proper rate
function

I4(s) = Oinf [J(p, 8) + hs(p)) (16.24)
<p<l
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where J(p, s) is given by (16.23). The above expression (16.24) for I4(s) is not
convenient for computational purposes. However, using a different approach,
Chaganty and Sethuraman (1997) have derived the following equivalent form
for the rate function

. 1 * .
I4(s) = oé%fd 5 [plog(l + 2at*) + (1 — p) log(1 + 2a02t )+ 2h5(p)] ,
(16.25)
where
a = $2/(1+5%)

2p+a-1)+(a—-p)+ V(6 (p+a—-1)+a-p)* +40°a(l - a)
40%a(1 - a) '

We use the expression in (16.25) in our calculations.

16.3 Bahadur Slopes and Efficiencies

We now derive the Bahadur slopes of the common test statistics for testing
Ho : § =0wus. Hy : 8 > 0in the Tukey model, using the results of Section
16.2. These slopes will depend on the alternative hypothesis, i.e., on the vector
A= (8, ¢, o) with§ > 0.

1. The Bahadur slope of the mean test is
em(d) = 20t —ci(ta)] (16.26)
where ¢;(t) is defined in (16.12) and t satisfies the equation

32 (1- €)(8 - ta) + ee” 32 (8- tr0o?) = 0. (16.27)

o

The Bahadur slope of the sign test is
es(A) = 2(log 2 + pa log(pa) + qx log(g)] (16.28)

where py = (1 —€)®(6) + ¢ ®(8/0), gx =1 —pa and & is the cdf of the
standard normal distribution. :

3. The Bahadur slope of the Wilcoxon test is

cw(A) = 2[2b())tr — log(cosh(ta))] (16.29)
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where

b(y) = € (—‘/:—Q) +25(1'€)¢(¢T2§?>
4 (1— 20(v30) - 5 (16.30)

and ty is the solution of the equation (16.21) with s = b(A).

4. The Bahadur slope of the t-statistic is
ci(N) = 214(b(N)) (16.31)

where b()) =6/V/(1 - €) + o’ and I14(s) is given by (16.24).

The Bahadur efficiencies of the mean test, t-test, and the sign test with
respect to the Wilcoxon test are defined as the ratio of the slopes and they
are given by ex(m, w) = em(A)/cw(A), exlt, w) = ¢(N)/cw(M) and ex(s, w) =
es(A)/cw(N), respectively. The Pitman efficiencies of these test statistics can be
obtained from more general formulas given in Serfling (1980, p. 321); see also
Hodges and Lehmann (1956, 1961). In our problem, the Pitman efficiencies of
the mean test and the t-test with respect to the Wilcoxon test are equal and
the common value is given by :

epa(m, w) = epa(t, W)
T 91 Y 2v2¢(1 - €) 52_ 2
= 3[(1 €) +e0”] {(1 e)+——-—————-m +a] |
(16.32)

whereas the Pitman efficiency of the sign test with respect to the Wilcoxon test
is '

. L
epr(s, w) = -25[(1 -€)+ 6/0’]2 {(1 —e)?+ %\%—%—%ﬂ + S;-] . (16.33)

Following the convention set in Andrews et al. (1972), we have set 0 = 3
and computed the Bahadur efficiencies ex(m, w), ex(t, w) and ex(s, w). These
efficiencies will depend on the alternative 6, and the level of contamination €.
For simplicity in notation, we shall drop the subscript A and denote them simply
as e(m, w), e(t, w) and e(s, w).

Figures 16.1, 16.2 and 16.3 give the surface of the Bahadur efficiencies
e(m, w), e(t, w) and e(s, w) as a function of 6 and €. Tables 16.1, 16.2 and 16.3
can be used to view the same information by looking at the performances of
the mean test, the t-test and the sign test, simultaneously, with respect to the
Wilcoxon test for a fixed level of contamination and varying values of 6. From
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a numerical point of view, the corresponding Pitman efficiencies are given by
the restriction of these surfaces to the plane § = 0. The fact that the limiting
Bahadur efficiency as § — 0 yields the Pitman efficiency has been established
in great generality in Wieand (1976), and we conjecture that it is true in this
case also. It is clear that the Bahadur efficiencies of the mean test, {-test and
the sign test with respect to the Wilcoxon test is less than 1 in a neighborhood
of ® = 0 and ¢ = 0, but not on the whole region of alternatives. This leads
us to the conclusion that the Wilcoxon test outperforms the remaining tests
in a neighborhood of the null hypothesis even under the presence of moderate
contamination.
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Table 16.1: Bahadur efficiencies of the mean test, t-test and the sign test with
respect to the Wilcoxon test when the level of contamination is 5%

N. Rao Chaganty and J. Sethuraman

€

6

e(m, w)

e(t, w)

e(s, w)

0.05

0.000
0.250
0.500
1.000
1.500
2.000
2.500
3.000

0.83615
0.84208
0.86294
0.97967
1.23220
1.61877
2.08962
2.59458

0.83615
0.86082
0.89467
0.94991
1.07476
1.26326
1.46462
1.64439

0.69638
0.70317
0.72332
0.79873
0.90046
0.98765
1.02746
1.02776

Table 16.2: Bahadur efficiencies of the mean test, t-test and the sign test with
respect to the Wilcoxon test when the level of contamination is 10%

€

0

e(m, w)

e(t, w)

e(s, w)

0.10

0.000
0.250
0.500
1.000
1.500
2.000
2.500
3.000

0.72819
0.73488
0.75811
0.87895
1.12328
1.47700
1.67873
2.32384

0.72819
0.75380
0.81043
0.91614
1.05802
1.24380
1.33772
1.58321

0.72689
0.73400
0.75505
0.83311
0.93433
1.01025
1.02781
1.02866

Table 16.3: Bahadur efficiencies of the mean test, i-test and the sign test with
respect to the Wilcoxon test when the level of contamination is 25%

6

e(m, w)

e(t, w)

e(s, w)

0.000
0.250
0.500
1.000
1.500
2.000
2.500
3.000

0.61885
0.62890
0.65991
0.79132
1.01506
1.30210
1.61679
1.94835

0.61885
0.63528
0.68437
0.86165
1.06753
1.24270
1.38110
1.49314

0.82077
0.82785
0.84847
0.91906
0.99199
1.02229
1.00918
0.98289
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Abstract

The generalized estimating equations (GEE) introduced by Liang and Zeger (Biometrika
73 (1986) 13-22) have been widely used over the past decade to analyze longitudinal data.
The method uses a generalized quasi-score function estimate for the regression coefficients, and
moment estimates for the correlation parameters. Recently, Crowder (Biometrika 82 (1995)
407-410) has pointed out some pitfalls with the estimation of the correlation parameters in the
GEE method. In this paper we present a new method for estimating the correlation parameters
which overcomes those pitfalls. For some commonly assumed correlation structures, we obtain
unique feasible estimates for the correlation parameters. Large sample properties of our estimates
are also established. © 1997 Elsevier Science B.V.

AMS classification: 62J12; 62F10; 62F12

Keywords: GEE; Longitudinal data; Positivé definite; Quasi-likelihood; Repeated measures;
Generalized least squares

1. Introduction

The statistical analysis of longitudinal data has been the topic of numerous statistical
papers in recent years. Several books on the topic have also been published, for example
Diggle et al. (1994), Jones (1993) and Lindsey (1993). Such data naturally occur when
repeated observations are taken on individuals, or the data is taken on clusters or groups
of subjects sharing similar characteristics.

In a landmark paper, Liang and Zeger (1986) introduced the generalized estimating
equations (GEE) for analyzing longitudinal data. The setup and the method can be
briefly described as follows. Let Y;=(yu,..., i) be a vector of repeated measure-
ments taken on the ith subject; associated with each measurement y;; is a vector of
covariates x;; = (xj1,...,%jp), 1 <j<t#;, 1<i<m. We will assume that the ¥;’s are un-
correlated. We do not specify the joint distribution of the vector ¥;, but do make some

* Tel. +18046833897; fax: +1804 683 3885; e-mail: nrc@math.odu.edu.

0378-3758/97/817.00 © 1997 Elsevier Science B.V. All rights reserved
" PII S0378-3758(96)00203-0
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assumptions concerning the moments. Let E(yi;) = pj; var(yy) = dh(wj), where ¢>0
may be a known constant or an unknown scale parameter. The variance function 4 is
assumed to be a known function. We also assume that there is an invertible function
g, known as the ‘link function’, such that ;= g~!(x};B), where f=(B1,....B,) is 2
vector of regression coefficients. Our main parameter of interest is B. For simplicity,
we will consider the balanced case in this paper; henceforth, we will set #=¢ for all
1 <i<m. Extensions of our results to the unbalanced case and missing data situations
will appear elsewhere.

The idea of Liang and Zeger (1986) is to model the dependence among the repeated
measurements on the ith subject, in the form of a ‘working correlation matrix’ R(«),
which is assumed to be a function of a vector of parameters «=(ci,...,%) . The
covariance matrix of Y; is then given by ¢ZX;, where Zi=A}/2(ﬁ)R(ot)A}/2(ﬁ) and
A;i(B) = diag(h(ui1 ), h(1i2); - .-, h(ir)). The parameter a is considered to be a nuisance
parameter. Let & be the subset of R? such that R(«) is a positive-definite matrix for
«€ &. In most examples the set & is an open convex subset of R? and R() converges
to a positive semi-definite matrix as & approaches the boundary of the set &. Liang
and Zeger (1986) suggest estimating f using a GEE and estimating o and ¢ using
moment estimates via the current Pearsonian residuals. The estimate of f based on the
GEE is essentially a multivariate analog of the quasi-score function estimate based on
quasi-likelihood method. See Wedderburn (1974) and McCullagh (1983).

The GEE approach has several inherent pitfalls. Liang and Zeger (1986) have es-
tablished consistency and asymptotic normality of their estimate of f as m— oo. Their
proof depended on the use of m'/2 consistent estimates for both « and ¢. Using simple
calculations, Crowder (1995) has demonstrated that there can be no general asymptotic
theory supporting existence or consistency of the joint distribution of the estimates of 8
and «. He also used examples to show that the moment estimate of a might not fall in
the set & of feasible values if the correlation structure is misspecified, thus crippling the
whole estimation procedure. Prentice (1988) suggested another GEE for the estimate
of & and established asymptotic normality for the joint distribution of his estimates of
B and a. Prentice and Zhao (1991), extending the idea of Prentice (1988), introduced
estimating equations in an ad hoc fashion for the covariance parameter estimation for a
general multivariate response. There is no guarantee, however, the suggested estimates
of the correlation parameters in either of those papers will fall within the set & of
feasible values for small and even for moderately large samples.

In this paper we give a new approach to estimating the nuisance parameter a. Our
method can be regarded as an extension of the method of (generalized) least squares,
where we assume that the elements of the covariance matrix are functions of the
regression parameters, moreover the off-diagonal elements are also functions of some
unknown nuisance parameters. A partial minimization is then performed both with
respect to the regression parameters as well as the unknown nuisance parameters.

In addition to yielding feasible estimates of a, our approach has several other ad-
vantages. The method of Prentice (1988) is computationally intensive, whereas in this
paper we have closed-form expressions for our estimates of « for some correlation
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structures. The method of Liang and Zeger (1986), for some correlation models, re-
quires estimation of ¢ a priori to the estimation of § and «. Our estimates of § and «
are independent of the value of ¢. Unlike in Liang and Zeger (1986, Theorem 2),
we will establish consistency and asymptotic normality of our estimate of B, without
making any assumptions about the asymptotic properties of the estimates of « and .
The organization of this paper is as follows. In Section 2 we will give a motiva-
tion and derive an alternative set of estimating equations for § and «. The estimating
equation for § is same as the GEE, whereas the estimating equation for « is new.
The method of solving the estimating equations will be discussed in Section 3. In Sec-
tion 4 the existence of a unique feasible estimate, &, for « will be established and a
closed-form expression for @ for most of the commonly assumed correlation structures
will be derived. In Section 5 we derive the large sample properties of our estimates,
in particular, showing that ﬂ is consistent and @ is asymptotically biased. We will also
prove that ﬂ and @ are jointly asymptotically normal and obtain expressions for the
asymptotic covariances, and furthermore will show that the asymptotic distribution of
@ does not depend on f. In Section 6 we present some simulation results, which show
that for small samples, our estimate of B is highly efficient compared with the GEE
estimate. Finally, the proofs are given in the appendix. :

2. Estimating equations

This section outlines our new method of estimation of the unknown parameters S, o,
and ¢. For the longitudinal data setup described in Section 1, it is clear since we
have no knowledge of the underlying distribution, that we should think of estimating
the unknown parameters by the principle of (generalized) least squares. This requires
minimizing the quadratic form

04(ho) = = zlcy — (B (X — B

= % f;lm — w(B)Y 47 P(BYRN ) AT (BYY; - (B)). @2.1)

Equating to zero the partial derivative with respect to o of (2.1) gives the first set
of estimating equations:

ER Ya)

J

22' Z=0, 1<j<gq. | (2.2)

where Z; A"l/z(ﬁ)(Y ui(B)), 1<i<m. Strictly speakmg the est1mat1ng equation
for B should now be obtained by differentiating (2.1) with respect to . However, we
would like to avoid certain complications that arise with the differentiation, caused
by B appearing both in the mean vector y;(f) and the variance matrix 4; #{(B). And
importantly we would like to get an estimating equation which yields an unbiased
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estimate for f in some cases where « is known. Finally, we would like our estimate of
B to coincide with the maximum likelihood estimate in cases where the observations
yii’s are a random sample from an exponential family of distributions. To derive an
estimating equation for B which satisfies the three aforementioned requirements, we
will treat the quadratic form (2.1) as a function of three variables

OB, B*,x) = il (Y; = m(B)Y 47 2B )R ()47 (B )(Yi — il B)). (2.3)

Carrying out the differentiation of (2.3) with respect to f, then substituting g* =g,
gives the estimating equation

> DM PR @) =0, e

where Di(B) = 0p;/0f'.

Solving Eq. (2.4) for f amounts to searching the minimum values of (2.3) along
cross sections perpendicular to the B* axis, and choosing the value that falls on the 45°
line with respect to the (B, 5*) axis. But the principle of (generalized) least squares
requires finding the infimum of (2.3) along the 45° line with respect to the (B, §*) axis.
In general these two methods of minimization do not yield the same estimate for j,
though they do coincide if the global infimum of (2.3) with respect to (8, f*) happens
to fall on the 45° line. Eq. (2.4) is exactly the equation proposed by Liang and Zeger
" (1986) to estimate B, and can also be derived using the principle of quasi-likelihood.

Our method of estimating the parameters is to solve the estimating Egs. (2.2) and
(2.4) simultaneously for § and « to obtain estimates § and &. A step by step recursive
algorithm for solving the equations, based on a Fisher scoring method similar to the
one proposed by Liang and Zeger (1986), is given in Section 3. From the definition
of B and @ we have

(8, 8,0)>0(B,8,8) for all Ba - 25)

where the function Q is defined in (2.3). Since the estimates do not fully conform to
the principle of (generalized) least squares, it is reasonable to call our estimates ,E, and
o, ‘quasi-least squares estimates’ of B and a, respectively.

Suppose that ¢ is an unknown scale parameter; it is playing the same role as ¢ of
ordinary least squares (OLS) theory. See Rao (1973, p. 227). In OLS, ¢? is estimated
using the mean residual sum of squares, and the same approach here says to estimate

¢ by

)

5=L

1
mt,-

Z 5
7, 2.6)
=1

where Z: =A; I 2('B\)(Y,- - /,z,-(/?)). If a bias-corrected estimate is preferable, we can use
¢y =mtg/(mt — p), instead.
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3. Iterative procedure for the estimates

We will now study methods of solving Egs. (2.2) and (2.4) for f and «. Let
m
f@=3ZR(0)Z, 3.1
i=1 .

where Z,-=A,7'1/2(ﬂ)(Y,- — pi(B)), for 1<i<m. Eq. (2.2) can be rewritten as

) £ 7R (@)

a“/ i=1 0o

BR(a)

J

— 7= —ZZ’R ) —=—=—=R (2)Z;=0, 1<j<q.

(3.2)

For many commonly employed correlation structures where R~!(a) is readily available,
Eq. (3.2) can be solved explicitly for « in terms of Z;’s. In other cases an alternate
way of solving Eq. (2.2) is to use the spectral decomposition

R(a) = P(a) A(e)P'(),

where P(a) is an orthogonal matrix of eigenvectors and A(«) = diag(4(«)) is a diago-
nal matrix consisting of the eigenvalues of R(a). We will see later for some commonly
employed correlation structures R(«), the matrix of eigenvectors P(«) =P does not de-
pend on «, but only the eigenvalues A(«) depend on «. In this case we can rewrite
Eq. (3.1) as

flo)= iZiIPA_I(“)P'Zi = i W,-'A"l(a).W,-
i=1 i=1

Il
M

-
I

—
7:-

L ()
t m 2
p> (}:w,-k /lk(a)>, (3.3)

i=1

where W;=P’'Z; = (wy). Differentiating (3.3) with respect to a we get the following
set of estimating equations:

af(a)=a%{z <wak/’lk(°‘)>} lgqu, | (3.4)

aaj k=1 \i=l

which can be used instead of (3.2) to get an estimate of a.

An iterative method for obtaining the estimates f§, @ of § and « respectively, can be
described as follows:

Step 1: Choose an initial value ﬁ for B.

Step 2: Compute 4; = A;(B), Tis = pi(B), Z; = A;~/* (Y;~Ti;) and D, = D,(ﬁ) 1<i<m.

Step 3: Solve for & using either Eq. (3.2) or Eq. (3.4). Compute R=R(%) and
Ti=4; ~I2RATV2 1<igm.
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Step 4: Update the value of f as

m ~

—1 mo__
=B+ {;5:5,7’0:} {;D,‘ZF‘(I’:—E)}-

Step 5. Stop the process if ,E o~ E and take E as an estimate of f. The estimate
of a is given by @=1u. Otherwise, repeat Steps 2—4 replacing E by E

In the next section we will show that the estimate o in Step 3 falls within the
set & of feasible values at every step of the iteration for commonly assumed correlatlon
structures.

4. Special correlation structures

We will now discuss solutions for Eq. (3.2) for commonly assumed correlation
structures. In some of the examples, we will also obtain unique feasible, closed form
solutions for the estimate of «. In general, that there is a unique solution &€ & for the
equations given by (3.2) can be shown as follows. Let us denote the first and second
order partial derivatives of R(a) by the matrices

OR(¢) .. [ OR(x) R(x) _ [ 3°R(a)
da —dlag( Ou; )’ 0a2 <6aj6ajf>

respectively, both of order gt x gz. We will use the symbol ® to denote the Kronecker
product between two matrices. It is easy to verify that the matrix of second-order
partial derivatives of f(«) defined in (3.1) can be written as

6R(oc) 6R(oc)

Vi (2) = 22{(1 ®Z/R™ ) —— (e’ ®R) (1 ®R™1Z)

Vi R(cx)

-, ®ZR™") (U, ®R‘1Z)}

where R~! =R~!(«) and I, is the identity matrix of order ¢ and e is a # x 1 column
vector of ones. For several correlation structures, the elements of the correlation matrix
R(a) are linear functions of « and we have 3?R(a)/da? = 0. It is therefore easy to verify
that V2f () is a positive definite matrix for « € %, for all m, or in some cases for m>1.
Hence f(«) is a strictly convex function. Furthermore, f(«) — oo as a approaches
the boundary of &. It thus has a unique minimum at @ € &, where & is such that
Vf(a)=0. Note that in Examples 4.1-4.3 below g=1 and a; =p.

Example 4.1. Suppose that the observations on each subject are equicorrelated with
correlation p. The correlation matrix equals R(p)=(1 — p)I; + pee’, where pe€ & =
(=1/(t = 1), 1). For this correlation structure, it is well known that

DS DR S p ,}
R {(l—p)" EDEEDO NIk
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Thus in this case (3.2) reduces to

= 1+@=-1)p" &
{Eaa-ari i hear) o D

Let Zi=(¢'Z)/t and S?={Z!(I, — ee'/t)Z;}/(t — 1) be the mean and variance of the
components of the vector Z;. If we let d =¢ (i Z4)/ (S, S?) then Eq. (4.1) can
be written as

. 2 .
tp :
14 } =d. 4.2
ety (42)
The value of p€ ¥ satisfying (4.2) is given by
d'?—1

We can use the above value of p in Step 3 of the iterative process for this correlation
structure. In this example the method of Liang and Zeger (1986) requues the estima-
tion of ¢ a priori to the estimation of p, whereas our estimate 7 given by (4.3) is
independent of ¢.

Example 4.2. Let the correlation matrix R(p) be a tridiagonal matrix, with 1 on the di-
agonal and p on the upper and lower diagonals. This is equivalent to the one-dependent
model. The eigenvalues and eigenvectors of R(p) are given by

M(p)=1+2p cos{km/(t + 1)}, 1<k<t
and |
xp = (sin{km/(t + 1)},...,sin{tkn/(t + 1)}Y, 1<k<y,

respectively. We can verify that R(p) is positive definite if and only if pe & = (P15 p1),
where px= — 1/(2cos{kn/(t + 1)}). Clearly, in this example the eigenvectors do not
depend on p. Since x;’s are not orthonormal we can construct, using Gram-Schmidt
orthogonalization, a set of orthonormal eigenvectors {pr, 1<k<t} from x;’s. Let
W;=P'Z;=(wy), where the kth column of P is Pr. In this case we can verify that
Eq. (3.4) reduces to

R i=1 Vi
f(p)‘"—"' {Z lk(lp)k} dp {Z (1 +2p cos{kn/(t+ 1)})}

k=1

(142 p cos{km/(t + 1)})?

_ { 3 2eos{bn/(t+ D} T, wh }

0.

It is easy to check that f’(p;)= — oo, f'(p;)=00 and f'(p) is continuous on
the interval (py, p;). Therefore, there exists a such that f'(p)=0. This establishes
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the existence of a solution for the above equation. The value of p can be computed
numerically and can be used in Step 3 of the iterative process. We can also handle
I-dependent (/> 1) structure in a similar manner, though the expressions for the eigen-
values and eigenvectors are not as simple as the case /=1. Unlike the method of
Liang and Zeger (1986) no estimate of ¢ is required to get p in this example.

Example 4.3. Suppose the correlation matrix R(p) = (pl"~/!), where p € ¥ =(-1,1).
This structure is the well known first-order autoregressive (AR(1)) structure. Note that

_ 1
R ](P)=—TF','2'3 {L+p’C-pCi},

(1

where C, =diag(0,1,...,1,0) and C, is a tridiagonal matrix with 0 on the diagonal
and 1 on the upper and lower diagonals. Thus :

7(p) = :"zlz,fR—‘(p)zi

1 m m m »
S { SN ZIZ+ 25 ZICoZi — p Ez,.’clz,-} .
(1-p%) Liz i=1 i=1

Equating to zero the derivative of f(p) we get
ampz —2bpp +ap= 0, 4.4)

where an = YL, Z/CiZ; and bn= Y i, Z{(I;+C;)Z;. Note that the elements of R(p)
are not linear functions of p in this example. We will show in Appendix A that there
is a unique root for Eq. (4.4) in the interval & =(-1,1) and is given by

b = (82— 2}
A )

p= (45)

The value of p can be used in Step 3 of the iterative process. In this example, if we
use the method of Liang and Zeger (1986), an estimate of ¢ must be computed in the
determination of the estimate of 8, whereas our method does not require estimation of
¢ prior to the estimation of f.

Example 4.4. We now consider the case where the correlation matrix R is totally
unspecified. To get an estimate of R, we need to

m ) '
min S ZIR7'Z = min tr(ZR™1), (4.6)
i=1 .

where Z=3 7 Z;Z]. Let us assume that m>¢; which is a reasonable assumption, con-
sidering the fact that we have #(z—1)/2 unknown correlation parameters. The matrix Z
is positive definite in this case. It has been shown by Whittle (1958, p. 234, Lemma 3)
that there exists a unique, positive-definite correlation matrix R where the minimum
(4.6) is attained. See also Olkin and Pratt (1958). The correlation matrix R, can be
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obtained by solving the equation
Z=R4R, 4.7

where 4 is a diagonal matrix of positive elements. It follows from the results of Olkin
and Pratt (1958, p. 231) that the solution to Eq. (4.7) is given by

R’ = A—l/z(Al/ZZAl/Z)I/ZA—l/Z (48)
and the diagonal matrix 4 satisfies the fixed point equation

4 = diag(4'2Z4"%)112, (4.9)

 For a given Z, the diagonal matrix 4 satisfying (4.9) can be obtained recursively

starting with a trial value 4o and computing 4y = diag(4}%,Z4;”%)/? at the kth step.
The proof that this fixed point iteration scheme converges to the unique solution of
Eq. (4.9) and related results will appear elsewhere. The estimate R given by Eq. (4.8)
can be used in Step 3 of the iterative process.

5. Large sample properties

In this section, we will study the large sample properties of the quasi-least square
estimates ,B and o defined in Section 2. In particular, we will show that /3 is consis-
tent, whereas @, is asymptotically biased as m — oo; the subscript m emphasizes the
dependence of the estimates on m. Theorem 5.1 below shows that the joint distribution
of (ﬂm,a,,,) is asymptotically normal. We will introduce some notation before stating
the main theorem of this section. Let R be the true correlation matrix. Recall that R(a)
is the working correlation matrix.

Assume that @=E(Z;® Z;Z]) and ¥ =E(Z;Z! ® Z;Z]) are finite, where the expec-
tation is taken under the true correlation structure R. Let 1=(8,a,¢)" and 8 =(8,a)'.
Define S

In(0) = {DiBYAT " (BIR™ @y P(BIDUB)} (5.1
Yin(0) = {Dj(B)4; *(BIR™ ()RR (@) "*(BYDi(B)} pxp (52)
Yia(4) = [el{(D(B)A; " (BIR™(2)) ® B} Ol gy (53)

where By =0R™(«)/0oy and e; is p x 1 column vector with one at the Jth row and
zero elsewhere. Note that if the working correlation is indeed the true correlation then
¥i11(0) = F11(6). The following three quantities are useful to descnbe the asymptotic

distribution of & U

a(e) = [tr{B‘RT}]qxl,

_ [ J PR @)%
fzz(a)—[ {W }qu’

V22(4) = [tr{(B; ® Bt) ¥}/ — tr {B;R }tr {B¢R }yxq- (54)
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Define

oy [240(6) 0 " 4¢7:11(8) “fnz(/)

J‘(")“{ 0 ¢f22(°‘)]’ ="V ey 69
Assume that

1 m o )

L= [0 2 = e (56)
and

1 & . 4¢711(0) Y12(A) | _

;g%(A)—’[ 10 d)z;/zzu)}—“//(l) (say) (5.7)
as m— 00.

We are now in a position to state the main theorem of this section. The regularity
conditions needed to establish Theorem 5.1 are same as the conditions that we would
normally use in a multivariate central limit theorem for independent but not necessarily
identically distributed random vectors. In fact, conditions (5.6), (5.7)'are similar to the
condition on the covariance matrices that is in the multivariate central limit theorem,
Theorem B of Serfling (1981, p. 30).

Theorem 5.1. Let A=(f,o,¢) be fixed. Let 0=(B, o) and 5,,,:(@,,&,,,)’ be the
solution to Egs. (2.2) and (2.4). Suppose that conditions (5.6) and (5.7) hold. Then
B, is a consistent estimate of P, whereas @, is asymptotically biased. Further,

f-l().)vf(z)f-l(z)>
m

(B, — 6) is AN (f-l(;.)u(z), (5.8)

where p(A)=(0,¢d'(2)) and F(A), ¥ (1), a(e) are defined in (5.6), (5.7) and (5.4).

Proof of Theorem 5.1 is given in Appendix B. It is easy to check that (5.8) implies
that B, and @, are asymptotically correlated and

7 i an (g, SLONEOSATOY
'm s © m ’

—1 -1
B is AN s+ 55 o), 22D @)

We can also easily verify that a,,, given in (2.6) is a consistent estimate of ¢
using the fact that E is a consistent estimate of f, even if the working correlation is‘
misspecified. Note that if the working correlation is correctly specified, that is, R(«) =R,
then ¥7,(0)=#1,(6) and the asymptotic covariance of ﬁ,,, reduces to ¢ (6)/m.
Since in practice the true correlation R is unknown, we can assume that the working
correlation is correctly specified. An estimate of the covariance matrix of B is then
obtained by replacing the parameters o« and f in (5.1) with their estimates, giving
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us

-1

() = $m{ §D:(Em>fr‘D,-(Bm>} (5.9)

where Z; = A”z(ﬂ YR( ,,,)AI/Z(B ) and d),,, is given by (2.6). Alternatively, followmc
Liang and Zeger (1986), Royall (1986), we can estimate the covariance matrix of B
using a model-robust, sandwich-type variance estimator given by

Sa(B,) = { éDﬁ(ﬁ,n)SrlDi(Bm)} { 2D’<ﬁm>z-‘cov(Y>z Di(Bn) }

-1

of £ 0162570 (510

where cov(Y;)=U,U!, Ui=Y; — ui(ﬁm). The estimate (5.9) or (5.10) can be used to
construct confidence intervals for linear functions of f.

Remark 5.1. It is interesting to note that the asymptotic distribution of @, does not
depend on B, unlike the asymptotic distribution of [)’m, which depends on all the pa-
rameters f3, o, ¢ and R. Also, the asymptotic bias of &, depends only on « and R but
not on ¢.

Remark 5.2. In the case where the distribution of Z;’s is correctly specified and it is
a multivariate normal distribution with mean 0 and covariance matrix ¢R(«) and if
.62R(a)/6a =0, then we can show that ¥3;(1) = £,(«). Thus in this case we have

%p is AN (a+fzzl(a)a(a) 2 (a)> . (5.11)

Remark 5.3. For some working correlation structures, simulation results have shown
that it is possible to reduce the bias of &, using the jackknife, bias-reducing technique.
Also, since the asymptotic covariance of @, depends on the third and fourth moments
of the y;’s, it is perhaps best to use the nonparametric method, bootstrap, to estimate
the covariance of &,. See Efron (1982) for an excellent introduction to the jackknife
and the bootstrap methods. On the other hand, in data analysis problems where « is
also an important parameter, the GEE method is preferable, since it uses a consistent
estimate of o, provided of course the GEE estimate of a falls within the set of feasible
values.

6. Simulation results for small samples

In this section we will show, using Monte Carlo simulations, that the relative ef-
ficiency of the quasi-least squares regression parameter estimates can be very high
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for small samples when compared to the estimates obtained using the GEE method.
To make a fair comparison between the two methods, we consider an example where
a totally unspecified working correlation structure is appropriate, since in this case the
GEE method also yields feasible estimates for the correlation parameters. We will first
fit a model using the GEE method to a real-life data and then make a comparison
between the two methods using simulated data from the fitted model.

Consider the data in Table 3.10 of Rencher (1995, p. 92). The data consists of blood
glucose levels on three occasions for 52 women. The variable y represents a fasting
glucose measurement and the covariate x is the glucose measurement one hour after
sugar intake. We have fit a simple linear regression model between y and x for the data
using the GEE method with identity link function (g(#)=1u), and totally unspecified
working correlation structure. The regression line is estimated to be

y=061.364+0.1098x. (6.1)

The estimates of the correlation matrix between the three repeated measurements, and
of the scale parameter, are given by

1 01971 —-0.0122
Ro=| 01971 1 02081 |, & =7665. (6.2)
~0.0122 0.2081 1

The regression coefficients in (6.1) were highly significant. We will use the model (6.1)
and (6.2), which describes the relationship between the three repeated measurements
on y and x, to compare the quasi-least squares and the GEE methods.

To make the comparison between the two methods, we have simulated 1000 repli-
cations of samples of three (¢ =3) repeated measurements on the variable y, using the
x values in Table 3.10 of Rencher (1995, p. 92) on m women for m=35,15,52. The
simulations were performed using the values of the parameters in (6.1) and (6.2) and
a Guassian distribution for the errors. We then fit the true model for each replication
of the simulated data using the quasi-least squares and the GEE methods. For quasi-
least squares we have used the fixed-point iteration scheme described in Example 4.4
to estimate the correlation matrix in the iterative process for obtaining the regression
parameter estimates. Mean square errors (MSE) of the estimates of the intercept and
the slope were computed using the 1000 replications.

Table 1 gives the relative efficiencies of the quasi-least squares estimates with respect
. to the GEE estimates of the regression parameters for various values of m. The relative
efficiency is defined as the ratio of the MSE computed from the GEE method to that
of the MSE of the quasi-least squares method. We can see from Table 1 that the
relative efficiency is very high for m =35, being more than three for both the intercept
and the slope. Further, the relative efficiency is decreasing as m increases. But note
that even for moderately large samples (m =52, the size of the original sample in
Rencher (1995, p. 92)) the relative efficiency of the quasi-least squares is more than 1.
Therefore, the quasi-least squares approach is preferable not only for small samples,
but for moderately large samples as well.
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Table 1 .
Relative efficiencies of the quasi-least squares regression
parameters estimates with respect to the GEE estimates.

m Intercept Slope

5 3.387 3.183
15 1.219 1.236
52 1.057 . 1.062

Table 2
Bias/(standard error) of the estimates of the correlation parameters. The numbers above diagonal correspond
to the quasi-least squares estimates; numbers below diagonal are for the GEE estimates.

m=3$5 : m=15 , m=352
0.1693 0.0135 N 0.1184 0.0112 . 0.1030 0.0051
(0.2850)  (0.2657) (0.1350)  (0.1395) (0.0709)  (0.0743)
0.0137 . 0.1575 0.0377 . 0.1267 0.0126 . 0.1105
(0.5901) ~(02708)  (0.2715) (0.1369)  (0.1390) (0.0704)
0.0144 0.0755 . 0.0250 0.0461 . 0.0128 0.0171
(0.5680)  (0.5639) (0.2817)  (0.2722) (0.1493)  (0.1378)

The biases and the standard errors of the estimates of the correlation parameters are
" contained in Table 2. As expected, the quasi-least squares estimates have more bias
than those from the GEE method. On the other hand, the quasi-least squares estimates
of the correlation parameters have smaller standard errors and therefore are more stable
than the GEE estimates.
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Appendix A. Proof of unique feasible root in Example 4.3

We can verify that in Example 4.3, the roots of the quadratic equation (4.4) are real
if and only if

m 2 (m .32
{ 2 ZI+ Cz)Z,-} > { zz,.'clz,.}
i=1 i=1
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2(In ® C)z
S 1>
Z R |7 n ® (0, + Co)} 2

& 12 P {Un ® CYUn @ (I, + C2)) ™|
& 12 lnax{ O + C) 7'},

(A1)

where z' = (Z ey Z)) and Amax(4) denotes the maximum eigenvalue of 4. The matrix
Ci(l; + C,)™! is similar to a symmetric tridiagonal matrix. Using the strum sequence
property of tridiagonal matrices, we can verify that all the eigenvalues of Cy(J; + C;)™"
fall in the interval [—1, 1]. Therefore (Al) holds and we have established that

‘EZ’CI <EZ’(I,+C2)Z (A2)

for all Z;’s. It is easy to verify, using the inequality (A2), that the root of Eq. ‘(4.4)
that falls in the interval (—1,1) is given by (4.5) almost surely. '

Appendix B. Proof of Theorem 5.1

Fix 6=(B,a). Let v(B",0)=Z/(8*, )R () Zi(B", B), where Zi(B", =4 "*(")
(Y; — wi(B)). Now, for ||t]| <K, 0<K <00, under standard regularity conditions, con-
sidering a Taylor series expansion around § we can write :

Enlt) = zl (", 0 + t/m'%) = vi(",0)}
- ;{Tf; ¢ Vi B, e)+—§:z V2y(B",6%)¢ (B1)

where 0* is a point on the line joining # and @ + #/m'/2. The above expansion is true
for any (B*,B,). In particular for f* =, we can write (B1) as :

—_ 1 & . L LN (0* .
En(t) = —i7 i;t Vvi(6) + 5 i;t Vavi(6*)e. (B2)
Now, if we let
| Q. .
(1) = — z; {Vzvi(e ) — V2(6)},
then (B2) can be rewritten as

En(t) = 475 fﬁ £'Vvi(0) + i _sz’vzv,-(e)t + im0 ’7';(0’

]/2 }:t Vvi(0) + ——th(/l)t

i=]

s 5 0{7n(0) - AW} + £, (B3)
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where E{V?v;(6)} = #(A). Under the assumption (5.6) it follows from the weak law
of large numbers,

1 m ’ .
7 2 A7(0) - (D} = 0y(1)

Using an argument similar to the one found in Sen and Singer (1993, p. 207), we can
show that sup,,. el <K} |1m(#)| tends to zero almost surely as m — co. Thus uniformly
for ||t]| <K we have

&) = i S/ VHO) + 5 zf:l £ A+ op(1). (B4)

Disregarding the o,(1) term and minimizing the right-hand side of (B4) with respect
to t, we get the point of minimum as

(1 m -1 1 =
= {; fg -ﬁ(l)} {m g VVi(G)}- | (BS)
From the definition of ¢,(t) we can conclude that 7, w111 also correspond closely to

the quasi-least squares estimate of 6, which is attained at 8, Therefore, we have

-~ T 1 : :
9m=9+m+0p(m). (B6)

It is easy to verify that

E{Vv(0)} = u(4) and cov{V¥(6)} = 7i(4). (B7)
From (B5)-(B7) and the weak law of large numbers, we get

B — 0+ S (D)p(A) (B8)

in probability, as m — oo. It is easy to check from (B8) that E,,, is consistent and %,
is asymptotically biased. Under the assumptions (5.6), (5.7), from (B7), (B6), (B5),
the multivariate central limit theorem and Slutsky’s theorem, we can conclude that

~ ~1(y -1
(6m — 0) = t’xn/z + OP( }/2) is AN(J‘I(A)#(X), e (l?V’il)j (A)>.

(B9)

This completes the proof of the theorem.
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SUMMARY

Quasi-least squares (QLS), a marginal statistical approach via generalized estimating equations
that is described in the balanced data setting by Chaganty (1997, Journal of Statistical Planning
and Inference 83, 39-54), allows for application of a wide range of working correlation structures
when analyzing serially correlated data. We extend the application of QLS to serially correlated,
unequally spaced, and unbalanced data using three useful working correlation models: the first-
order autoregressive (AR(1)), the Markov, and the generalized Markov structure described by
Niifiez-Anton and Woodworth (1994, Biometrics 50, 445-456). We compare QLS and the original
formulation of the generalized estimating equation approach (GEE) for these structures, demon-
strating that (i) infeasibility of the GEE correlation parameter estimates can be a problem, (ii) it
is difficult to obtain consistent moment estimates of the correlation parameters for the generalized
Markov structure, and (iii) the use of QLS can lead to reduced mean square error of the estimate
of the regression parameter for small samples of moderately correlated data. To choose between
alternative correlation models, we propose a criterion that is based on the principle of generalized
least squares. Finally, data for which the generalized Markov structure is appropriate are analyzed
to demonstrate the use of QLS in selecting a suitable working correlation structure and identifying
important covariates. :

1. Introduction .

In this paper, we apply a statistical method based on the generalized estimating equation approach
of Liang and Zeger (1986) to the analysis of longitudinal data that may be difficult to analyze using
other established methods. We consider repeated measures data collected by taking measurements
of an outcome variable and associated covariates on each of a group of independent subjects. Our
primary data analysis goal is to identify important covariates and to explain their effect on the
marginal mean of the outcome variable while also accounting for the correlation among observations
on each subject.

. Accomplishing this research objective may be difficult due to certain conditions that are typical
in longitudinal studies. The timing and total number of measurements taken may vary from subject
to subject so that the data may be unbalanced and unequally spaced. The outcome variable may

¢ not be normally distributed. The intrasubject correlation may be described using a time-dependent
pattern. For example, the correlation between two measurements may decrease as they become more

* Corresponding author’s email address: jshults@chkd.com
Key words: Cholesky decomposition; GEE; Longitudinal data; Positive definite matrix; Quasi-
least squares; Serial correlation.
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highly separated in time, or two measurements separated by a fixed distance in time may be more
highly correlated if they are collected later during the study rather than earlier.

To describe the marginal mean of the outcome variable as a function of the covariates, one ap-
proach is to use the method of generalized estimating equations (GEE), first proposed by Liang
and Zeger (1986). The method of GEE specifies a generalized linear model for the outcome variable
and models the association among observations on each subject via a working correlation struc-
ture. Estimation proceeds by alternating between solving a generalized estimating equation for the
regression parameter and consistent moment estimation of the correlation parameter. Many recent
publications discuss extensions and applications of the GEE approach, especially for correlated
binary data. In particular, Prentice (1988) and Zhao and Prentice (1990) developed generalizations
of GEE that Liang, Zeger, and Qaqish (1992) refer to as GEE1 and GEE2, respectively. Desmond
(1997) gives a good description of GEE, GEE1, and GEE2.

One widely accepted property of the method of GEE is that, if the correlation structure is
misspecified, the estimates of the regression parameters will nevertheless remain consistent. There
has been some controversy, however, regarding the effect of misspecification on the efficiency of
these estimates. [For a discussion of this topic, see papers by McDonald (1993), Zhao, Prentice,
and Self (1992), Fitzmaurice and Laird (1993), and Fitzmaurice (1995).] In any case, it is intuitively
reasonable that careful modeling of the correlation structure leads to improved estimation of the
regression and the correlation parameters.

Modeling the correlation structure of the outcomes on each subject comprises (i) identifying
reasonable correlation structures for the data under consideration, (ii) implementing these struc-
tures in an analysis, and (iii) choosing among the final sets of estimates associated with each of
the different structures. Depending on our initial identification of reasonable working correlation
structures, we may be limited in carrying out steps (ii) and (iii) using the method of GEE. For
some correlation structures, implementing (ii) is difficult, either because the final GEE estimates
of their parameters are infeasible or because consistent moment estimates of their parameters are
not easily obtained. In this paper, we consider three successively generalized spatial correlation
structures that are applicable to serially correlated data—the AR(1), the Markov, and the general-
ized Markov structure that was described by Niifiez-Anton and Woodworth (1994). For the AR(1)
and Markov structures, GEE may yield infeasible final estimates of the correlation parameters. For
the generalized Markov structure, consistent moment estimates of the parameters are not easily
obtained so that GEE is not easily applied for this structure. Carrying out (iii) using GEE may also
be difficult because the method does not provide a simple criterion for correlation model selection.

In contrast to the original formulation of GEE, QLS does provide a simple basis for nonasymp-
totic comparison of different correlation structures. We suggest a criterion for correlation model
selection that is based on the principle of generalized least squares. The QLS approach also allows
for consideration of the AR(1), Markov, and generalized Markov correlation structures and, for a
continuous outcome variable, the final QLS estimates of the parameters in these structures will be
feasible. The goal of this paper is to demonstrate that, when compared with the original formula-
tion of GEE, QLS can improve our ability to model the correlation in our data. We also conduct
simulations to show that QLS can lead to more efficient estimation of the regression parameters.
Comparisons between QLS, GEE1, and GEE2 for correlated binary data are planned as the subject
of future research. :

Organization of this paper is as follows. In Section 2, we establish notation, give a description
of the method of quasi-least squares, and propose a criterion for correlation model selection. In
Section 3, we discuss the AR(1), Markov, and generalized Markov correlation structures, give an
interpretation of their correlation parameters, and discuss implementation of the method of QLS
for each structure. In Section 4, we describe simulations that compare QLS with GEE and a data
analysis that demonstrates the use of QLS in choosing an appropriate working correlation structure
and identifying important covariates.

2. The Method of Quasi-Least Squares

2.1 Notation and Assumptions .

We consider data comprising vectors Y/ = (¥i1,¥i2, . - - ,¥in,) of measurements taken on subject ¢
at times T} = (ti1,%i2,. .. tin;), 0 < ti1 < ti2 < -+« < tin,;. Associated with each measurement y;;
is a vector of covariates a:gj = (i1, Tij2s - - 1 Tijp)i 1 £ j € niy 1 £ 4 < m. We assume that any
variability in the spacing or number of observations collected on each subject is either the result
of the study design or of a process that is independent of the observed and unobserved data, i.e.,
missing values are missing at random. We do not assume a distributional form for the outcome
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variable, only that E(y;;) = u;; and var(y;;) = 7;v(ui;), where 7; > 0 is either a known constant
or an unknown parameter. The regression equation u;; = g‘l(:zgjﬁ) relates the marginal mean of
the outcome variable with covariates measured on each subject, where 8’ = (81,082,...,0p) is &
vector of unknown regression coefficients and g is an invertible link function.

We assume that observations taken on different subjects are independent. Taken on one
subject, they are correlated. The covariance matrix V; of observations on subject ¢ satisfies
Vi = (TiA:)2Ri(p)(AiY:)'/?, where A; = diag(v(uir),. .., ¥(uin,)), Ti = diag(t1,- -+ Tni)s
R;(p) is a working correlation matrix, and o' = (p1,p2,-- -, ps) is a vector of unknown parameters.
We consider p to be a nuisance parameter; its estimation is carried out primarily to aid estimation
of B. Let Ul = (ui1,..-,uin,) and Zi(B) = ATYAY - U) = (211, %n,)- We refer to the
quadratic form

Q.8 = _ ZIBR (P Z:(B) (2.1)
i=1

as the generalized error sum of squares.

9.2 A Description of the Methods

Here we describe the method of QLS and make a brief comparison with the original formulation of
GEE. [For a more detailed description in the balanced data setting, see Chaganty (1997).] QLS uses
a partial derivative of the generalized error sum of squares (2.1) to derive the following estimating
equation for g

> Dia7 RN 0)Z8) = 0. (22)

i=1
The estimating equation for p is obtained by differentiating (2.1) with respect to p, yielding

'

NN S ()P .
Y ZB) =B = 0. (2.3)

i=1

To obtain QLS estimates (5, B) for (p,B), we select a starting value B for B (or a starting value
p for p) and then iterate between solving (2.3) for p (the rho step) and solving (2.2) for B (the
beta step) until the estimates of 3 converge. GEE also uses estimating equation (2.2) for 8 and
alternates between estimation of p and 8, though it requires the use of m!/2 consistent estimates
of p. In practice, moment estimates of p that are based on the current values of the standardized
‘residuals (z;;) are often used. If 7; is an unknown parameter, it can be consistently estimated using
f5 = 1/m)T2, 2,-2_7-, where 2;; is z;; evaluated at B. 1 7; = 7 for all j, we use the consistent
estimate 7 = (1/n) T2, Z7L, E?j, where n = X%, n;.

2.3 Choosing a Correlation Structure

To choose among competing structures, Diggle, Liang, and Zeger (1994, p. 145) suggest fitting
different correlation models and then comparing the corresponding final estimates of the regression
parameter and their standard errors. “If they differ substantially, a more careful treatment of the
covariance model may be necessary.” There are two drawbacks to this approach. First, it relies on
asymptotic standard errors. As pointed out by Lindsey (1993, p. 68), decisions based on asymptotic
standard errors may be inappropriate for small samples. Second, if more careful modeling of the
correlation structure seems necessary, there is ambiguity as to how one should then proceed with
the analysis.

In contrast to the method of GEE, QLS provides a basis for nonasymptotic comparison of
different correlation structures. Since the method estimates p by minimizing (2.1) with respect to
p, given several alternatives, a natural choice of correlation structure is the structure that minimizes
the generalized error sum of squares, with an adjustment for the total number of parameters in
the model. If, e.g., we are analyzing data in which the correlation among measurements on each
subject is expected to decrease with increased separation in time, we might reasonably apply the
structures considered in Section 3. For a given set of covariates and a specified link function and
mean variance relationship, we might obtain QLS estimates of (p, B) for each structure, choosing
as our final correlation model the structure that corresponds to the minimum value of the adjusted
residual generalized sum of squares Q. = Q(5,8)/(n —p — q), where n = £™, n;. Our criterion
generalizes to correlated data the least-squares approach of minimizing the residual sum of squares.
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It is analogous to Akaike’s Information Criterion (AIC) and Schwarz’s Bayesian Criterion (SBC),
two criteria commonly used for covariance model selection in analyses of normally distributed data
(see Littell et al., 1996, p. 101).

Another approach that can be used to compare the fit of two correlation models is construction of
an empirical semivariogram (Diggle et al., 1994, p. 82) or the two graphical techniques, draftman’s
display and parallel axis plots, suggested by Dawson, Gennings, and Carter (1997).

3. Three Useful Spatial Correlation Models
Here we discuss three useful correlation structures, interpret their parameters, and discuss -
implementation of QLS for each structure.

3.1 The Correlation Structures

In what follows, p = (p1,p2) = (&, A). Let Ri(a,A) = [rj-k], where "';‘k = gttt ek for k> j,
rt. =1, r;.k = r},j for k < j, and e;; is a function of (e, ). In this paper, we consider three
special cases of R;(a,)): the AR(1), for which e;; = 1 for all i and j the Markov, for which
eij = tij — tij—1; and the generalized Markov, for which .

-t

—'J——X'Ji ifA#0;0 <51 <y
e = s . (3.1)
ln(r;i—l) fA=0;0<t;—1 <ty

We can easily verify that R;(c, ) has a unique Cholesky decomposition Ii(ea, )T (a, ), where
Ti(a, A) is a lower triangular matrix (see the Appendix). Since the kth diagonal element of I';(, A)
is(1- a’eix )1/ 2 and R;(a, )) is positive definite if and only if all the diagonal elements of ['i(a, A)
are positive, feasible values of a are those values for which 1 - a?¢i is defined and positive for all
k and <.

Bounds on a for each structure are as follows. The parameter o € (—1,1) for the AR(1) structure
and also for the Markov structure if the e;; are integer valued. To allow a to take on negative
values for the Markov structure, if necessary, we could change the time scale so that the ;) are
integers or are suitably defined so that all values of 1~ o are defined and positive. This may be
problematic, however. Suppose that e;;41 is odd, so that corr(y,-j,y,-j.;.l) may be either positive or
negative. Changing the time scale to make e;;+1 even is equivalent to assuming that corr(y;;, ¥ij+1)
is positive. Since our basic assumptions regarding the model should be invariant to choice of time
scale, we use the Markov structure only when we expect the intrasubject correlation to be positive,
which is the case in most biological applications. We thus restrict « to the interval (0,1). For the
generalized Markov, e;; > 0 for any fixed A € (—00,00) and we restrict a to (0,1), as for the
Markov structure.

The parameters (a,)) have a useful interpretation for longitudinal data analysis. For the
AR(1) or Markov structure, the correlation between measurements on one subject decreases with
increasing difference in order or timing of measurements, respectively. The Markov structure is
appropriate for unequally spaced observations and may be used as an alternative to imputation
of missing values. The generalized Markov structure introduces an additional parameter A to the
Markov structure that greatly increases its flexibility. We first note that the generalized model allows
for accelerated, or decelerated, decay in the correlation between measurements for a fixed value of a
since (£} -ftg\j) /) increases towards oo as A — 0o and decreases towards zero as A — —oo. (Here we
have assumed that (i) t;; > 1, which can be achieved through reparameterization in the time scale, if
necessary, and (ii) that ¢;; < t;x, for all , and k > j.) This is useful because one potential difficulty
in applying the Markov structure is that it may force the correlations between measurements to
decrease too rapidly with increasing separation in time. Other researchers, including Muiioz et al.
(1992), also used parameters to dampen the correlation in the Markov structure. The generalized
Markov model extends the Markov structure so that the correlation between measurements is not
just a function of their separation in time but also of their time of occurrence in the study. This
is because Lim)\_.o(t,-"‘,c - tg\j)/)\ = In(tik/ti;) = In(1 + w/t;;), where tix = w+tij. Since, for fixed
w, limg, ;o0 In(1 + w/t;;) = 0, for values of A that are small in absolute value, responses in the
outcome variable that are separated by w time units will be more highly correlated if they are
observed later in the study than if they are observed earlier. This generalization will be useful if we
are dealing with outcome variables, such as growth in humans, that become more highly correlated
over time.
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3.2 Implementing the Method of Quasi-Least Squares

To simplify programming the beta step of QLS, we use the Cholesky decomposition Ri'l(a, A) =
Li(a, A)Li(e, A) (see the Appendix) and an approach similar to that described in Lindsey (1993).

Using current estimates & and X, we calculate T} = Lj(&, NAT /2, and S} = Li(a&, :\)/ii—l/ b
for all i, where & = Y; — U;. We then regress T = (T1,T’,...,Tm) on § = (81,83,...,5m) to
obtain an adjustment that is added to our previous estimate of B. The estimating process ends
when this adjustment is approximately zero.

To implement the p step, we again use the Cholesky decomposition to reexpress (2.1) as

m ni 2 eij 2 ni—1
zj5 — 2077 245251 + 2351 2
QaAB =) - 3 D A (3.2)
i=1 j=2 ini>2 j=2

For the AR(1) structure, we used differentiation and simple arithmetic to obtain the following
unique point of minimum of (3.2) in the interval (-1,1):

m n{ 2 2 m ng m ng
S (e + don) =\ D La(zs — 25-1)2 ity Djle(as + zij-1)2
m i *
. 2} it Dm0 Fijij-1
For the Markov correlation structure, we used a modified Newton-Raphson method to minimize

(3.2) with respect to o over (0,1). For the generalized Markov structure, we wrote a grid search
program. All programs were written in STATA. .

4. Comparison with the Method of GEE

Here we use simulations to compare the methods of GEE and QLS when the true and working
correlation structures are both AR(1) (Section 4.2), Markov (Section 4.2), and generalized Markov
(Section 4.3).

4.1 The Model for the Simulations

We consider a data set collected according to a two-treatment cross-over design because incorrectly

assuming that the observations are uncorrelated in this setting can lead to a severe loss of efficiency
in estimation of 3 (see Diggle et al., 1994, pp. 60-61). The model for our simulations is Y; = X;f8+e€;,

where
X! = ( 1 1 1 )
Til Ti2 Ti3

and 8’ = (Bo,B1); ¢ = 1,2,...,8. The treatment sequences (x41,Zi2, Ti3) comprise all distinct
permutations of zeros and ones for i = 1,2,...,8. For the AR(1) structure, the measurements
are equally spaced. For the Markov and generalized Markov structures, the vector of timings
(ti1,tio, ti3) is given by (2,7,8) for ¢ = 1,2,3,4, (2,3,8) for i = 5,6,7, and (2,5,9) for i = 8.
We allow the timings to vary between subjects because, although many study protocols call for
a common set of measurement times, in practice, this goal is not often achieved. This lack of a
common set of timings means that, assuming a common unstructured correlation matrix for all
subjects, as is often done in practice, may not be appropriate. We assume constant variance, i.e.,
rj=r1forj=123 Correlation in the data is induced by ¢;, which is assumed to be multivariate
pormal with mean zero and covariance TR;. We set 7 = 4 and (Bo, /1) = (120,—12.88). The
correlation matrix R; has AR(1) structure in Section 4.2, Markov structure in Section 4.2, and
generalized Markov structure in Section 4.3.

4.2 Comparisons for the AR(1) and Markov Structures

For the AR(1) correlation structure, we made our comparisons using the closed-form QLS estimate
of a and the following GEE estimate of « that is used in the “SAS Macro for Longitudinal Data
Analysis” (Groemping, 1994):

m n:=1
&g = (n—p) Di=1 je1 ZjTij+l
(n-m-p) iy

where n = 2, n;. For the Markov correlation structure, Liang and Zeger (1986, example 4) suggest
an ad hoc estimate of a. They first note that E(z;;zix) = raltii—tikl Substituting the current
estimate Z;;Z;x for E(zi;zix) and then taking logarithms yields In(Z;; Z;x) ~ In(7) + In(a)|ti; — tikl-
A natural estimate of In(a) is then given by the slope of the regression line of In(%;;Z;x) on

(3.3)

o=

(41)
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|tij — tikl. (When programming the method, we regressed In(}z;;Z;x|) on |tij — tik| since Z;;Z;k
may take on negative values.) Infeasibility is a problem for this ad hoc estimate, so we used
a modified estimate that was not so often infeasible during simulation runs. Consider the set
{d1 < d2 < -+- < d;} of distinctive values of spacings between any two measurements on one
subject. Let sy be the number of pairs (t;j, ;) such that |¢;; — tik| = dw. Since E(2ij2ix) = radv
if |tij — tik| = dw, we estimate In(a) by the slope of the regression line of In(Hyw) on dw, where
Hy = (1/5w) y(e,; ti):lte;—tar |=du } ZisZik-

We compared QLS and GEE for the Markov and AR(1) structures with regard to infeasibility and
efficiency. Our simulations demonstrate the problem that GEE may have regarding infeasibility of
its correlation parameter estimates. When the true and working structures are AR(1) and the data
are equally spaced, approximately 10% of simulation runs yielded infeasible final GEE estimates
of a. For the Markov structure and unequally spaced data, infeasibility was a greater problem.
Although Hy, is a superior estimate to Z;;Z;k, it may not estimate E(2ijzik) precisely for small
samples, so that the slope of the regression line used to construct the Markov GEE estimates may
be close to zero, resulting in an estimate of a that is close to one and maybe greater than one.
In our simulations, the final GEE Markov correlation parameter estimates were positively biased
for all values of o and were often infeasible. In some simulation runs, ‘over 30% of the final GEE
estimates of a were infeasible. Because GEE is usually implemented using moment estimates of the
correlation parameters, feasibility of these estimates is not guaranteed. For ad hoc estimates, such
as the Markov GEE estimate considered here, the likelihood of obtaining an infeasible correlation

_parameter estimate may be high. Since QLS will always yield feasible estimates for continuous
outcome variables, QLS might prove useful in providing a feasible correlation parameter estimate
should the method of GEE fail to do so.

Table 1 contains the ratio of the mean square error of the QLS regression parameter estimates to
the mean square error of the GEE estimates when the true and working correlation structures are
both AR(1) or both Markov. Simulation runs that yielded GEE estimates of o that were infeasible
were not used in the comparison and the efficacy of GEE is thus overstated. Table 1 shows that
QLS estimates 3 more efficiently than GEE when the intrasubject correlation is small to moderate
(a < 0.5), which is the case in most biological applications. For a > 0.5, GEE estimates 3 more
precisely than QLS, though it is important to bear in mind that, for all values of a, GEE may
yield an infeasible final estimate of the correlation parameter. The relative performance of the
two methods for larger values of a is probably due to properties of the moment estimates used
by GEE to estimate « for the AR(1) and Markov correlation structures, which had lower mean
square error for values of a ~ 1. Simulations conducted by the authors also confirmed what Diggle
et al. (1994, p. 60-61) observed: incorrectly assuming that the outcomes are uncorrelated in this
setting leads to inefficiency in estimation of B, especially as the intrasubject correlation increases
in value. Simulations were also performed for sample sizes 16, 32, 64, and 128. Even for the larger
samples, QLS outperformed GEE in terms of mean square error for a < 0.5. However, the gain in
performance decreased with increasing m. .

4.3 Comparisons for the Generalized Markov Structure

To demonstrate the difficulties involved, we attempt to extend Liang and Zeger's (1986) ad hoc
approach to estimation of a for the generalized Markov structure. For simplicity, assume that each
of m subjects has measurement times that are a subset of a common set of measurement times
{t1 < ta < --- < tn}. Now consider the set of spacings {n;x(}) = & - t;‘)/)\; 1<j<k<N}L

Table 1
Efficiency of QLS regression parameter estimate with respect to
the GEE estimate for the AR(1) and Markov correlation structures

Group parameter Constant parameter

a AR(1) Markov AR(1) Markov
0.1 1.12 1.75 1.07 1.29
0.3 1.07 1.42 1.03 1.14
0.5 0.98 1.11 0.99 1.04
0.7 0.84 0.87 0.96 0.96

0.9 0.63 : 0.71 © 0.96 0.96
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Table 2
MSEs of the regression parameter estimates obtained using QLS with three correlation structures
Group parameter Constant parameter
Generalized Generalized
A Identity Markov Markov Identity Markov Markov
-5 2.61 0.09 0.05 2.54 1.90 1.89
-3 2.63 0.31 0.31 2.34 1.74 1.74
1 2.61 2.13 2.10 1.62 1.47 1.46
3 2.61 2.65 2.65 1.31 1.30 1.32

Let n;;; = 1 if subject ¢ has measurement times t; and f; and let n;; = 0 otherwise. Let
8jk = Bizq nijk and Hjx = (1/8jk) Efiin, =1} %j Zik- Since E(2;5z;%) = ra%() | we can estimate
(@, A) using nonlinear regression between Hjj and Ta* 3, Clearly, this procedure does not yield
simple feasible and consistent estimates for the correlation parameters. The generalized Markov
structure is thus not easily applied using GEE.

We conducted simulations according to the model described in Section 4. 1, in which the actual
correlation structure is generalized Markov. Table 2 contains the mean square error (MSE) of
the QLS estimates of the regression parameters for & = 0.6 and for various values of A, when
the working correlation structure is the identity, Markov, and generalized Markov. Note that, for
A = 3, the independence model performs well. This is appropriate because, in this case, each
corr(yij, ¥:x) = 0. Table 2 indicates that correctly specifying the generalized Markov structure
reduces the mean square error so that, in addition to including an extra parameter that aids in our
interpretation of the data, this more general structure also allows for more precise estimation of 8.

4.4 Ezample

Here we apply QLS in an analysis of a data set that contains varying numbers of unequally
spaced measurements per subject to demonstrate use of the method to select an appropriate
correlation structure and to identify potentially important covariates. The data we consider (see
Nifiez-Anton and Woodworth, 1994, Figure 3) were collected during a study designed to compare
different cochlear prostheses implanted in a group of postlingually deafened adults (the Iowa
Cochlear Implant (ICI) Project; Gantz et al., 1988). The outcome variable is the percentage of
correct responses on a sentence recognition test that was administered at 1, 9, 18, and 30 months
postimplantation. Covariates include time of measurement and type of implant (A or B). Due to
loss of follow-up, incomplete data were available on treatment groups 0 and 1, comprising 23 and
21 subjects who were implanted with protheses A and B, respectively. To determine if there is
a difference in test scores over time between the two treatment groups we used QLS to fit the
following model to the full data set:

E(yij) = fo + Putij + Batl; + Bazi;  var(yij) =7 corr(Y;) = Ri(a, M),

where y;; is the percentage correct for test j on subject i, z; is the group indicator variable, ¢;;
is the month in which measurement y;; was made for j = 1,2,...,n; and i = 1,2,...,46. We
consider several working correlation structures for R;(a, A), including the identity, AR(1), Markov,
and generalized Markov.

Nifiez-Anton and Woodworth (1994) fit the above model to data on subjects who attained at
least a 5% improvement over baseline. After confirming multivariate normality for the outcome
variable in this subset of the data, they carried out their analysis using the REML approach
discussed in Harville (1974). To provide motivation for using an alternative approach, we consider
the full data set, which may not be normally distributed, as indicated by an apparent lack of
normality in the test scores at 1 and 9 months.

Table 3 contains the regression and correlation parameter estimates for the working correlation
structures in Section 3.1. According to the criterion proposed in Section 2.3, the generalized Markov
structure is the appropriate structure for these data since it corresponds to the minimum value of
the adjusted residual generalized sum of squares Q. = Q(ﬁ, é)/(n — p — q). We also note that Q.
may be used as a rough guide to covariate selection for the final model. For example, if we delete

from the model, Qa = 473.00 under an assumption of generalized Markov correlation structure,
whlch represents an approximately 8% increase over its value in the original model. This indicates
that t2 may be an important covariate to retain in the final model. We also note that fitting the
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Table 3
Regression, correlation parameter estimates, and adjusted
residual generalized sum of squares for ICI Project date

Working correlation structure Bo B B2 Bs é b Q.
Identity 12.97 2.31 —0.05 9.40 — — 761.23
AR(1) 11.58 2.27 -0.04 11.00 0.64 — 445.43
Markov 11.58 2.32 —-0.05 10.73 0.95 — 456.91
Generalized Markov 12.15 2.12 -0.04 11.29 0.84 0.39 439.50

generalized Markov correlation structure allows us to infer, as did Nifiez-Anton and Woodworth
(1994), that, since A = 0, test scores on one subject tend to stabilize over time. Inclusion of Ain
the generalized Markov structure thus aids in our interpretation of the data.
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RESUME

Les quasi moindre carrés (QLS), une approche statistique marginale via les équations d’estimation
généralisées qui sont décrites dans la situation de données équilibrées par Chatangy (1997, J.
Statist. Plann. Inference 63, 39-54) permettent l'utilisation d'un grand éventail de structures
de corrélation de travail quand on analyse des données présentant une corrélation sérielle. Nous
étendons Iapplication des QLS & des données présentant une corrélation sérielle, espacée de fagon
inégale, et non équilibrées en utilisant trois modeles utiles de corrélation de travail: I'auto-régressif
de premier ordre (AR(1)), le Markov, et la structure de Markov généralisée décrite par Néiez-
Anton et Woodworth (1994, Biometrics 50, 445-456). Nous comparons QLS et la formulation
originale des équations d’estimation généralisées (GEE) pour ces structures, démontrant que: (i)
’absence de solution aux estimations des parametres de corrélation peut étre un probleme; (ii)
il est difficile d’obtenir des estimations consistantes des moments des paramétres de corrélation
pour la structure de Markov généralisée; (iii) I'utilisation de QLS peut aboutir & une réduction de
Perreur moyenne sur I’estimation des parametres de régression pour des petits échantillons avec
des données modérément corrélées. Pour choisir entre les modeles de corrélation alternatifs, nous
proposons un critére qui est basé sur le principe des moindres carrés généralisés. Finalement, des
données pour lesquelles la structure de Markov généralisée est appropriée sont analysées, pour
démontrer 'utilisation de QLS dans le choix d’une structure de corrélation de travail adaptée et
dans l'identification des covariables importantes.
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APPENDIX

The generalized Markov structure ‘Ri(a,A) has a unique Cholesky decomposition given by
I'i(a, AT (e, ), where T'i(a, A) = [k} is & lower triangular matrix and

1 fj=1Lk=1
geiateintte; fk=17=2,...,n
vik={ VI-a%ew k=4 j=2...,m (5.1)
afikritotes /T qlec ifk<j;j=2,...,0
0 otherwise.

Its inverse, R; Y(a, \), is a symmetric tridiagonal matrix with unique Cholesky decomposition
Li(a, M) Li(a, ), where Li(a, ) = [l};] and

YVI-a2ir  fk=gj=1...,(n;i=1)

l;‘k _} ot/ /1-a%i ifk=j-1]=2...,n A (5.2)
1 ifk=j;j=ni
0 otherwise.
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SUMMARY

In this paper we obtain some inequalities for quadi-atic forms involving a symmetric matrix
and a positive semidefinite matrix. As special cases of those inequalities, we deduce several known
inequalities that are useful for the detection of outliers in statistical data analysis. We also extend
Scheffé’s S-method of construction of simultaneous confidence intervals for the case where the design
matrix is not of full rank and the set of estimable functions are linearly dependent.
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1. INTRODUCTION

In a recent article, Olkin (1992) presented an interesting survey of several inequalities that are
useful in'the detection of outliers in statistical data analysis. In this paper we prove some general
inequalities concerning two quadratic forms and deduce most of the inequalities in Olkin (1992)
as special cases. As another application to our theorems, we extend the Scheffé’s S-method of
constructing simultaneous confidence intervals for the case where the design matrix is not of full
rank and the set of estimable functions are linearly dependent. The organization of this paper is as
follows. In Section 2 we present the main theorems of this paper. Section 3 contains the statistical

applications.

2. MAIN RESULTS

We start with the following elementary. lemma, stated here without proof since it is well known.
It plays an important role in the proofs of the theorems in this paper.
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LEMMA 2.1 Let Cnxir and Dixn be two matrices. Assume that n > k. Then (n — k) eigenvalues
of the matriz CD are zero and the remaining k eigenvalues of CD, some of which may be zero,
coincide with the k eigenvalues of the matriz DC.

We will now develop some preliminaries before stating the main theorems of this paper. Let A
be a symmetric matrix of order n, B be a symmetric positive semidefinite matrix of order n and rank
equal to k. Let M(B) denote the column space of B. Let B = L, L}, , be the rank factorization

of B. Let

R = L(L'L)™!
A" = RAR 2.1)

Note that the Moore-Penrose inverse of B (see Searle (1982), page 220), is given by B* = RR'.
Observe that the .column spaces of B, B+, R and L are all equal. Let {A; > Ay > - > A} be the
ordered set of eigenvalues of A*. Applying Lemma 2.1 for C = R and D = R’ A we can see that
the set of eigenvalues of the matrix B* A is given by {A; > Aa > --- > A,0,.. .,0}. It is possible
that some of the Ajs may equal zero and also, all the );’s may be negative. Therefore A; need not
be the largest eigenvalue of B* A. Similarly, Ax need not be the smallest eigenvalue of B+ A. In
fact the largest eigenvalue of B+ A is given by max{0, A;} and the smallest eigenvalue of B* A is
equal to min{0, Ax}. We are now ready to state an inequality concerning two quadratic forms.

THEOREM 2.2 Let A be a symmetric matriz of order n. Let B be a symmetric positive semidefinite
matriz of order n and rank equal to k. Let {A\y > Ay > --- > A, 0,...,0) be the set of n eigenvalues
of Bt A. Then

A YBy<y'Ay< A yBy (2.2)

Jor ally € M(B). There ezists an eigenvector y; of BT A corresponding to the eigenvalue \; such
that y; € M(B) for 1 < i < k. Further, equality holds in the first inequality and in the second
inequality of (2.2) if we choose y to be equal to y; and y; respectively.

Proof. Let B = L L' be the rank factorization of B. Let R and A* be as defined in (2.1). Since ),
and A are the largest and the smallest eigenvalues of A*, by a well known inequality (see (1f.2.1)
of Rao (1973), page 62) we have

MV VEVA v A Vv : (2.3)

for all v € R*. Let y be a vector in M(B) and let v = L'y. It is easy to verify that y = Rv, since
y is also in the column space of L. Thus we have

viv y'By
vVA'v = yAy. ' (2.4)

The assertion (2.2) now follows from (2.3) and (2.4). We now proceed to show that the two in-
equalities in (2.2), become equalities for appropriate choices of y. For 1 < i < k, let v; # 0 be an
eigenvector of A* corresponding to the eigenvalue ); and let y; = Rv;. Note that y; # 0, since R
is of full column rank and v; # 0. We also have

B+Ay:' RR’ARV,‘

RA" Vi = /\,-RV,'
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= A,‘ y:. (25)

Thus y; is an eigenvector of B* A, corresponding to the eigenvalue A;. Clearly y; € M(B) since it
is in the column space of R. Therefore from (2.4) we have v} A*v; = y! Ay; and vl v; = y;By:.
Thus y;Ay; = \y;Byi for all 1 < ¢ < k. Therefore the first and second inequalities in (2.2)
become equalities if we choose y to be equal to y; and y; respectively. This completes the proof of
Theorem 2.2. O

In the case where Ay = --- = A, from (2.2) we have y' Ay = A\ y'By for all y € M(B).
The following example shows that this need not be true for vectors y which are not in M(B). The
example also shows that (2.2) need not be true for vectors y not in M(B).

10 1/4 1/4 s . . .
2.3 Let A = dB = . ;
EXAMPLE Le ( 0 0 ) an ( 14 1/4 ) Clearly, B is positive semidefinite

11
11
verify that the set of eigenvalues of B* A is given by {1, 0} and therefore A; equals 1. Consider the
vector y’ = (2, 0) which is not in the column space of B. A little calculation shows that y’ By =1
and y’ Ay =4 and hence y’ Ay > A\, y'By. Similarly, for y’ = (0, 2) we have y' Ay < A1y’ By.
Therefore this example shows that the inequalities in (2.2) need not hold for all y.

matrix of rank £ = 1. The Moore-Penrose inverse of B is given by B+ = . It is easy to

The next theorem gives sufficient condition for the inequality (2.2) to hold for all y € R".

THEOREM 2.4 Let A be a symmetric matriz of order n. Let B be a symmetric positive semidefinite
matriz of ordern and rank equal to k. Let {A; > Ao > --- > A, 0,...,0} be the set of n eigenvalues
of Bt A. If M(A) C M(B) then the mairices A\; B — A and A — A B are positive semidefinite.

Proof. Fix y € R". Then we can write y = y; + yj, where y, is the projection of y onto the
column space of B and yj* = y —ys. Note that By} = 0. If M(A) C M(B) we also have Ay; = 0.
Therefore, o

YAy = yAy ,
YBy = y;By. ~ (2.6)

Since y, € M(B) by (2.2) of Theorem 2.2 we have
M YiBys<yiAyi <A yiBys. ' (2.7)
Combining (2.6) and (2.7) we get |
A YBy<y' Ay<\ yBy. (2.8)

Since y € R" is arbitrary, (2.8) shows that the matrices \; B — A and A — A\ B are positive
semidefinite. O
The next lemma shows that for any two symmetric matrices A and B, if M(A) € M(B) then

the set of eigenvalues of B~ A is invariant of the choice of the g-inverse B~ of B. Thus we can
replace B* by any g-inverse B~ of B in the statement of Theorem 2.4.

237
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LEMMA 2.5 Let A and B be two symmetric matrices both of order n. If M(A) C M(B) then the
set of eigenvalues of B~ A is invariant of the choice of the g-inverse, B~, of B.

Proof. Let A and B be two symmetric matrices of order n such that M(A) C M(B). By spectral
decomposition, there exists orthogonal matrix P such that

A O
A=P ( o 0)P’=P1AP’1

where A is a diagonal matrix, O is a null matrixand P = [P; P,]is the partition of P, depending on
the rank of the matrix A. Since M(A) = M(P;) and M(A) C M(B), we have M(P;) C M(B).
Hence we can write P; = B U for some matrix U. Therefore,

A=P,AP|=BUAU'B=BVB (2.9)

where V = U A U’, is a symmetric matrix. Let B~ be a g-inverse of B. If we choose C=B~ BV
and D = B, then by, Lemma 2.1 we have that the set of eigenvalues of B~ A is exactly same as the
set of eigenvalues of the matrix BV. Thus, the eigenvalues of B~ A do not depend on the choice of
the g-inverse B~, of B. This completes the proof of the lemma. O

The following example shows that the conclusion of Lemma 2.5 need not be true if we do not
assume that M(A) is contained in M(B). '

EXAMPLE 2.6 Consider the matrices A and B as in Example 2.3. It is easy to verify that M(A) is
not contained in M(B). We have seen that in Example 2.3 the set of eigenvalues of B*A is given
by {1, 0}. Consider another g-inverse B~ = z g , of B. We can easily verify that the set of
eigenvalues of B~ A is given by {2, 0}, which is different from the set of eigenvalues of B* A. Thus,

the conclusion of Lemma 2.5 need not be true if M(A) is not contained in M(B).

Let b be a vector in ®*. Theorems 2.2 and 2.4 restricted to the matrix A = bb’ give rise to
several interesting inequalities. We treat this special case in Theorem 2.7 below. In Section 3 we will
use Theorem 2.7 to prove several inequalities that are useful in the detection of outliers in statistical
data analysis. '

THEOREM 2.7 Let B be a symmetric positive semidefinite matriz of order n. Lel B+ be the Moore-
Penrose inverse of B. Let M(B) denote the column space of B. Ifb is an n x 1 vector then

(b'y)? < ¥'Btb y'By (2.10)

for all y € M(B). Moreover, equality holds in (2.10) if we choose y = Bt b. Also, if rank of B
equals 1, then equality holds in (2.10) for all y € M(B). If b € M(B) then (2.10) holds for all
y € R", equivalently, the matriz (b’'B*b) B — bb’ is positive semidefinite.

Proof. Let b be an n x 1 vector. Let us choose A = bb’ in Theorems 2.2 and 2.4. Letting
C = B*b and D = b’ in Lemma 2.1 we can see that the set of eigenvalues of B* A is given by
{b'B+b,0,...,0}. Let the rank of B be equal to k. Then, in the notation of Theorem 2.2, the
eigenvalue ) equals b’'B*b and Ay = Ay if k=1 and A\, = 0if k > 2. Therefore Theorem 2.7
follows from Theorems 2.2 and 2.4. O

The following Corollary 2.8 is an easy consequence of Theorem 2.7. We will apply this corollary
in Section 3, to extend Scheffé’s S-method of constructing simultaneous confidence intervals, when
the design matrix is not of full rank and the set of estimable functions are linearly dependent.
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COROLLARY 2.8 Let B be a symmetric positive semidefinite matriz of ordern and B~ be a g-inverse
of B. Letb € M(B) then nB — bb’ is positive semidefinite if and only ifn > b’B~b.

Proof. Let b € M(B). It is easy to verify that b’ B~ b = b’B* b for any choice of the g-inverse
B~, of B. Suppose that n > b’ B+ b, then from Theorem 2.7 we have

7y'By 2b'B*b y'By>y'bb'y - (211)

for all y € ®". Therefore n B — bb/ is positive semidefinite. The other implication follows easily, if
we choose y = B*b. O

Theorem 2.7 is essentially asserting that if B is a positive semidefinite matrix and b € R" then

(FAY ]
sup % = b'B*b. , (2.12)
yeEM(B) ¥EY
Y#0

This generalizes the result contained in (11), Appendix A4 of Seber (1977), where the above equality
(2.12) was obtained for positive definite matrix B. Note that if A is a symmetric matrix and B is
a positive semidefinite matrix then the conclusion of Theorem 2.2 can be restated as ‘

’
sup y_M'. = ’\1

’
yBy inf YAy _ A (2.13)
€ M(B :
y y;m( )

y € M(B) YBy
y#o

where A; and A; are the eigenvalues of Bt A as defined in Theorem 2.2. A similar representation is
also true for the other eigenvalues \,, 2 < p < (k—1) and is given by the following theorem.

THEOREM 2.9 Let A be a symmetric matriz of order n. Let B be symmetric positive semidefinite
matriz of order n and rank equal to k. Let {A; > --- > A,0,.. .,0} be the set of n eigenvalues
of B¥ A. Then there ezist eigenvectors {¥1,-..,7:} of BtA, corresponding to the eigenvalues
{A1,..., A} such that y; €EM(B), yiBy; =0,1<i#j<k. Further

']
sup y’Ay =Ap (2.14)
{veB, y#0} ¥'By /

where B, = {y € M(B) : y{By =0, 1<i<(p-1)}, for 2< p < (k - 1).

Proof. Let A be a symmetric matrix and B be a symmetric positive semidefinite matrix of rank
equal to k and B* denote the Moore-Penrose inverse of B. Let L and R. and A" be as defined in
(2.1). Let {2y > --- 2> Ag} be the set of ordered eigenvalues of A* and V1,..., Ve be corresponding
orthogonal eigenvectors. By Theorem 1 of Bellman (1970), page 113, we have

IA‘ .

sup "v,v" =X for2<p<(k-1). (2.15)
{veRrt: viv=0}
V#0 1Li<(p-1)

Let y = Ryv, then as v varies in ®*, the vector y varies in M(B) and by (2.4) we have v'v=y'By
and v/A*v = y'Ay. Let us define y; = Rv; for 1 < i < k. Then by Theorem 2.2, y; is the
eigenvector of B* A corresponding to the eigenvalue );. Further yiBy; =0, since v; = L'y; and
viv; =0for 1 <i# j<k. The identity (2.14) now follows from (2.15). O

239




240 N. Rao Chaganty and Akhil K. Vaish

3. STATISTICAL APPLICATIONS

In this section we present some applications of the theorems in Section 2. Our first application
deals with some inequalities that are useful for the detection of outliers in statistical data. As a
second application we extend Scheffé’s S-method of constructing simultaneous confidence intervals, -
when the design matrix is not of full rank and the set of given estimable functions are linearly

dependent.

APPLICATION 3.1 In arecent paper Olkin (1992) considered the following problem, that is of interest
in the detection of outliers. Given the mean and standard deviation of a finite sample, find the
maximum deviation of any particular observation from the sample mean as a multiple of the sample
standard deviation. More specifically, let {y1,...,¥,} be a sample of n observations. The problem
is to find the minimum value of ¢ such that

(i —9)° < cZ(yg -§)? k=1,...,n, (3.1)

i=1

where § = 3, %/, is the sample mean. The above problem and its solution that the best value
of ¢ equals (n — 1)/n was first brought into the limelight of statistics by Samuelson (1968). The
inequality (3.1) with ¢ = (n — 1)/n is now popularly known as Samuelson’s inequality. Olkin (1992)
gave an interesting survey of the known proofs of Samuelson’s inequality and raised the question
whether there is room for yet another proof. He then gave a new proof with some generalizations.
We now show that Samuelson’s inequality and several other inequalities in Olkin (1992) follow from
our theorems of Section 2.

Lete’=(1,...,1)and B=1, —%ee’ , where I, is the identity matrix. Note that B is symmetric,
idempotent matrix. Hence B is positive semidefinite and B* = B. Fix 1 < k < n. Consider the
vector by, where the jth component is given by

_ f1-q/m) iti=k
by = {-1/n ifj 4k (3.2)

Since b} e = 0 we have b; € M(B). Also, b} Btb, = b b, = (n - 1)/n. If we choose b= Bl, by
the last assertion of Theorem 2.7 we have ((n — 1)/n) B —bb’ is positive semidefinite. Thus for any
y € R" we get '

-1
——-(nn )yBy > y'bibly , (33)

which is equivalent to Samuleson’s inequality:

(v —9)° < Q%QZ(yi-ﬁ)z. : (3.4)

=1

In a similar fashion we can deduce inequalities (2.3) and (2.4) of Olkin (1992) as a consequence of
Theorem 2.7 if we choose b = bs, and b = b3 respectively, where the jth component of the vectors
b, and bj are given by

o (1/k)=(1/n) f1<j<k
by = { -1/n ifk+1<j<n (3.5)
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Yk f1<j<k
bs; = -l/r fk+1<j<k+r (3.6)
0 ifk+r<j<n.

Also the inequality in Olkin (1992) involving Gini mean difference, due to Nair (1936), follows from
Theorem 2.7 if we choose b = by, where the jth component of by is given by

_2A2%-n-1)

byj = (n=1) forl<j<n. 3.7

Let us choose the vector b = bs in Theorem 2.7, where the jth component of bs is given by

-1 ifj=1
bs; = 1 ifj=n (3.8)
0 otherwise.

Clearly bs € M(B) and by B* bs = by bs = 2. Thus from Theorem 2.7 we have 2B — bs by is
positive semidefinite. For a vector y' = (y1,...,%.), let ¥ = (y(l), .-y Y(n)) Where y;) ’s are the
ordered values of the components of y. Since 2B — bg b{ is positive semidefinite we have '

2y'By 2§ bsbsy (3.9)

which after simplification reduces to an inequality, due to Thompson (1955), given by

(wm =y < 2 Y (w9 (3.10)

i=1

We will now show that the multidimensional inequalities contained in Olkin (1992) can also be
deduced from our theorems. Let W be a matrix of order I x n such that We =0 and WW’ = I.
Let B=1, - %ee' be as before and let A = W/W. Since B* = B and Ae = 0 we have
M(A) C M(B) and Bt A = A. Hence the largest eigenvalue of B+ A equals the largest eigenvalue
of A and which in turn equals the largest eigenvalue of W W’. Therefore A; = 1 for this choice of
B and A. Therefore by Theorem 2.4, we have B — A is positive semidefinite. Thus we get

YWWy <y (l,- ;ll-ee’)y for all ye R™. (3.11)

Thus for any m x n matrix Z, the matrix
z (L, - %ee’)Z’ -ZW'WZ (3.12)
is positive semidefinite. Hence inequality (3.6) in Olkin (1992) holds.

APPLICATION 3.2 Our second application deals with multiple comparison procedures in linear mod-
els. One of the most important problems in multiple comparisons is the problem of construction of
simultaneous confidence intervals for a given set of estimable functions. Among the several methods
available, Scheffé’s technique has been the most popular and widely used method for the construction
of simultaneous confidence intervals. A very nice description of Scheffé’s S-method can be found in
Seber (1977), page 128. In most texts the S-method is usually described assuming that the design
matrix is of full rank and the set of given estimable functions are linearly independent. However,
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this is rarely the case in practice. As an important application of the results of Section 2 we now
show that Scheffé’s S-method can be extended to the case where the design matrix is not of full
rank and the set of estimable functions are linearly dependent.

Consider the linear model y = X B +¢, where y is an n x 1 vector of observations, fisapx 1
vector of parameters, X is a design matrix of order n x p and ¢ is a n x 1 vector of random errors. Let
us assume that ¢ is distributed as multivariate normal with mean 0 and variance-covariance matrix
o2I,. Assume that the rank of X is r, where r < p. Consider s estimable functions K’g3, where
Kpxs is a matrix of rank ¢ < s. It is well known that the condition of estimability is equivalent
to M(K) C M(X'X). Let G be a g-inverse of X' X and (n —r) 2=y (I, -XGX')y . From
Theorem 4.6 of Seber (1977) it follows that the statistic

po (KB-KB) (K'GK)~ (K'§—K'A)/g
a2

(3.13)

has an F-distribution with ¢ and (n —r) degrees of freedom, where B is any solution to the equation
X'X3 =X'y. Let F¥,_, be the 100(1 — a) percentile of the F-distribution with g and (n —r)
degrees of freedom, then from (3.13) we have

l-a = Pr(F< Fia.,)

Pr((K'8 - K'8Y (K'GK)™ (K'f - K'B) < 07 Fip-)

= Pr(bB"b £ n) - (3.14)

where n = qo? Fepr,B=K'GKandb= K’(3 - B). Note that b € M(B) since b € M(K') and
from Lemma 3.3 below we have M(K’) = M(K’ GK). Since B is a symmetric positive semidefinite
matrix and b € M(B), by Corollary 2.8 we have that (3.14) is equivalent to

l1-a Pr( b'bbh < gh'Bh forallh )

= Pr(lh’(K'B—K'ﬁ)l < Vobh'Bh for anh). (3.15)

We therefore have a simultaneous confidence intervals for any linear function h'(K'’3) of the estimable
functions K'3, namely,

h/(K'B) £ (¢ F2 -, )? & VR'(K'GK)R (3.16)

such that the overall probability for the whole class of such intervals is equal to (1 - a).
We have used the following lemma in Application 3.2.

LEMMA 3.3 Let K and X be as in Application 3.2. Suppose that M(K) C M(X'X). Let G be a
g-inverse of X' X. Then M(K') = M(K' GK).

Proof. Clearly M(K' GK) C M(K'). Let G be a g-inverse of X’ X. Since M(K) C M(X'X) we
can write K = (X’ X) D for some matrix D. Therefore the rank of K' GK is same as the rank of
D’(X’ X) D, which in turn equals the rank of D’ X'. Thus we have

rank of (K’ GK) = rank of (D'X')
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> rank of (K'). (3.17)

Since the other inequality always holds, we have rank of (K’ G K) equals rank of K'. This completes
the proof of the lemma.
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Abstract

In a recent paper, Chaganty (1997, J. Statist. Plann. Inference 63, 39-54) introduced the
method of quasi-least squares (QLS) for estimating the regression, correlation and scale pa-
rameters in longitudinal data analysis problems. The QLS estimates of the regression and scale
parameters are consistent even if the working comelation structure is misspecified. The esti-
mate of the correlation parameter, however, is asymptotically biased. In this paper, we present
modified (C-QLS) estimates of the correlation parameter for the following working correlation
structures that are appropriate for the analysis of balanced and equally spaced longitudinal data:
the unstructured matrix, for which the C-QLS estimate is a positive definite, consistent correlation
matrix; and the exchangeable, tridiagonal, and autoregressive structures, for which the C-QLS
estimates are feasible, consistent and robust against misspecification. We also present feasible
and consistent C-QLS estimates for two structures appropriate for the analysis of unbalanced
and unequally spaced longitudinal data: the Markov and generalized Markov working correlation
structures that were discussed by Nuiiez-Anton and Woodworth (1994, Biometrics 50, 445-456)
and Shults and Chaganty (1998, Biometrics 54, 1622-1630). We then present an improved
consistent estimate of the scale parameter. Finally, examples are given to contrast the C-QLS
estimates with estimates obtained using the widely used generalized estimating equation (GEE)
approach. © 1999 Elsevier Science B.V. All rights reserved.

AMS classifications: primary 62J12; 62F10; 62F12; secondary 15A23

Keywords: GEE; Generalized least squares; Longitudinal data; Positive definite matrix;
Quasi-least squares; Repeated measures

1. Introduction

We consider longitudinal data that can be described as follows. Let ¥; = (yi, .., Yin y
be a vector of repeated measurements taken on the ith subject; associated with each
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measurement y;; is a vector of covariates x,-j=(x,»jl,...,x,-jp)’; 1<j<n, 1<i<m. The
Y;’s are uncorrelated with an unspecified distribution that satisfies E(y;;)=; and
var(y;;) = ¢v(tt;j). The variance function v is assumed to be known but ¢>0 may
be a known constant or an unknown scale parameter. We also assume that there is
an invertible function g, known as the link function, such that p;; = pii(f) = g"(x,fjﬁ )
where € Z” is a vector of unknown regression coefficients. The correlation between
the repeated measurements on each subject is modelled by a working correlation matrix
R(x), which is a function of the vector x=(2y,...,2;)". The set of feasible values of
x is a subset & of 27 such that R(x) is a positive-definite matrix for x€ &. The
vector % is considered to be an unknown nuisance parameter that must be eliminated
to estimate 8, the main parameter of interest.

There are numerous papers in the literature concerning estimation of f§ and x that
use the method of generalized'estimating equations (GEE), introduced by Liang and
Zeger (1986). In this paper, we primarily focus on an alternative method of estimation
known as quasi-least squares (QLS) that was described in Chaganty (1997) and Shults
and Chaganty (1998). Both the GEE and the QLS methods use the same estimating
equation for B and both methods yield a consistent estimate for . Furthermore, as
m — 00, the asymptotic relative efficiency of the QLS estimate of B with respect to
the corresponding GEE estimate is 1. The two methods differ however, in estimation
of the working correlation parameter «. The QLS method estimates « by minimizing
the generalized error sum of squares (see Eq. (2.1)), whereas the GEE method uses
a moment estimate for the correlation parameter .

The QLS estimate of the correlation parameter % is asymptotically biased. In this pa-
per, we eliminate this asymptotic bias by modifying the QLS estimate of the correlation
parameter using continuous and one-to-one transformations that depend on the working
correlation matrix. Our goal in eliminating the bias of the QLS correlation parameter
estimate is to allow for consistent estimation of the standard errors of the regression
parameter estimate. Consider first the situation where we have an equal number of
measurements on each subject that are observed at equally spaced time points. Sup-
pose that the working correlation is totally unspecified. In this case the modified QLS
(C-QLS) estimate of the correlation matrix is positive definite and consistent. Next,
suppose that a structured correlation matrix can be used to describe the pattern of cor-
relation among observations collected on each subject and that reasonable candidates
for the correlation structure include the AR(1), equicorrelated, and the tridiagonal. Each
of these structures depends on a single parameter p, which represents the correlation
between two adjacent observations collected on a subject. (We shall use x to denote
the working correlation parameter and p to denote the true correlation parameter.) In
this situation, we recommend using a two-stage procedure to estimate the regression
and correlation parameters. The first stage uses the AR(1) structure as the working
structure; it yields a C-QLS estimate j,, of the correlation parameter p that is not
only feasible and consistent, but is also robust against misspecification of the corre-
lation structure among the AR(1), equicorrelated, and tridiagonal working correlation
structures. In the second stage we obtain the final C-QLS estimate of the regression
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parameter by solving the estimating equation for § using p,, and the most appropriate
working structure for the data being analyzed. This will ensure that we do not lose
any efficiency in estimating the regression parameter.

Consider now the situation in which the observations on each subject are unbalanced
and unequally spaced and the correlation between measurements on each subject de-
pends on their separation in time. The intra-subject correlation may also stabilize over
time, in the sense that two successive measurements taken on a subject later during
a study will be more highly correlated than if they are collected earlier. Two correla-
tion models that are appropriate in these situations are the Markov and the generalized
Markov (see Niiiez-Anton and Woodworth, 1994). As was discussed in Shults and
Chaganty (1998), the method of GEE may yield infeasible estimates of the correlation
parameter for the Markov structure and cannot easily be applied for the generalized
Markov structure. In this paper, we derive a consistent C-QLS estimate of the correla-
tion parameter for the Markov and generalized Markov structures under an assumption
that the correlation model has been correctly specified. The C-QLS estimate of the
regression parameter f8 is obtained by solving the estimating equation for f§ using the
C-QLS estimate of the correlation parameter p.

The organization of this paper is as follows: In Section 2 we briefly describe the
method of QLS and give an expression for the asymptotic bias of the correlation
parameter estimate. In Section 3 we obtain consistent estimates of the true correla-
tion parameter using continuous and one-to-one transformations on the QLS estimate
of the working correlation parameter for several correlation models: the unstructured
(Section 3.1); the AR(1), tridiagonal, and equicorrelated (Section 3.2); and the Markov
(Section 3.3) and generalized Markov (Section 3.4). In Section 4 we propose an im-
proved consistent estimate of the scale parameter ¢. We then apply GEE and the
C-QLS approach with the modified regression, correlation and scale parameter esti-
mates in analyses of equally spaced and balanced dental data (Section 5.1) and un-
equally spaced and unbalanced audiology data (Section 5.2). Finally, the appendix
contains the proof of consistency of the scale parameter estimate.

2. Quasi-least squares

Here, we briefly describe the method of quasi-least squares when the data comprise
equal numbers of measurements (balanced observations) that are collected at equally
spaced time points on each of a group of independent subjects. For a more detailed
description see Chaganty (1997) and Shults and Chaganty (1998).

Let Z(B)=A47"2(B)(Y: — m(B)), where p(B)=(pr(B)-...1n(B)Y and Ai(B)=
diag (v(st;1(B)), - - -, (1tin( B))) be the vector of means and diagonal matrix of variances,
respectively; 1 <i<m. The method of QLS obtains estimates by partially minimizing
the generalized error sum of squares

OB, R(x))= S;‘IZ{(/&) R\ (2) Z(P) 2.1
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with respect to f€ #” and x€ &. Note that the quadratic form Eq. (2.1) not only
depends on B and x, but also on the structure of the correlation matrix R(2). The
estimating equations obtained by taking partial derivatives of Eq. (2.1) with respect to
B and z, are

S° DUBIATVAB) R\ (x) Z(B)=0 (22)
i=1

and
m -1
ZZ{(ﬂ)aR (“)Z,-(ﬂ)=0, 1<j<g, (2.3)
i=1 31/

where D;(B)= du;/0p’. The QLS estimates /?,,, and %, of f and x are the solutions of
the two Eqs. (2.2) and (2.3). Let R be the true unknown correlation structure between
the repeated measurements on each subject. Under some conditions, appealing to the
weak law of large numbers, Chaganty (1997) has shown that

B.—p and &,—x— 5" (Ra(x) (2.4)

in probability as m — oo, where

-1 2p—1
a(x) = [tr(aR (x)R)] and Spn(x)= [tr(mﬁ)] . (2.5)
61_/' gx1 adj a’i‘(k axq

(The — sign in Eq. (2.4) was incorrectly written as + in Chaganty (1997)). It follows
from Eq. (2.4) that /?,,, is a consistent estimate of f, even if the working correlation
is misspecified. But %, has an asymptotic bias given by fi‘(x)a(z), which depends
both on the working and the true correlation matrices.

3. Consistent estimate of the true correlation parameter

Here, we obtain continuous and one-to-one transformations of the QLS estimate of
the working correlation parameter to obtain a consistent estimate of the true correlation
parameter. These transformations depend on the working correlation structure that is
most appropriate for our data. We first consider longitudinal data that are balanced and
* equally spaced in time. We derive transformations in a closed form for the unstruc-
tured correlation matrix (Section 3.1) and for the AR(1), equicorrelated, and tridiag-
onal structures (Section 3.2). We next derive bias-eliminating transformations for two
structures appropriate for the analysis of unbalanced and unequally spaced data — the
Markov (Section 3.3) and the generalized Markov (Section 3.4). These transformations
are not in a closed form, but the C-QLS estimates of the correlation parameters can
be obtained numerically.
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3.1. Unstructured correlation matrix

Suppose that the working correlation matrix, R(x) =R is unstructured. Here the fea-
sible set &, is the class of all positive-definite correlation matrices. Let /?um and 1%,,, be
the QLS estimates of § and R, respectively. Since the QLS estimate R, is asymptoti-
cally biased, we will use a transformation on R,, to obtain a consistent estimate. From
the results of Whittle (1958) and Olkin and Pratt (1958) we know that every positive
definite matrix X~ admits a unique decomposition

T =RAR, ' (3.1)

where A is a diagonal matrix of positive elements and R is a correlation matrix. Clearly,
decomposition (3.1) also holds for the subclass of positive definite correlation matrices.
The function f,:R (= RAR)— R is a continuous, one-to-one and onto mapping from
& to &, where &, = {ﬁey,,: v=(1§01§)"e>0}. Here, e is a vector of ones and
o denotes the Hadamard product. Furthermore f,(¢R)= f(R) for all ¢$>0. It is easy
to verify that for Re &, f,'(R)=RAR=R, where A= diag(v). For n=2 we have
&, =, and for n>2, the set &, is a proper open subset of &,. See Olkin and Pratt
(1958) (p. 233) for an example of a correlation matrix that is in %, but not in .

If the working correlation is unstructured, we can obtain a bias corrected estimate
ﬁcm, of the true correlation matrix using the following three steps:

Step 1: Assume that the working correlation matrix is unstructured and compute the
QLS estimates Bum and R,. See Chaganty (1997) (Example 4.4) for computational
details.

Step 2: Compute Z,m =(1/m) 0, Zi Bum)Zi Bum) a0d G = (R o Rw)~'e, where
o denotes the Hadamard product.

Step 3: Obtain the modified estimate of the correlation matrix,

) Rum = £ (Rm) = Ry diag(6) Ry if 6,>0 (i.e. Rne %),
Rcm =
Ry = (diag(Z um)) " Z ym(diag(Z ,m))~"/*  otherwise.

(3.2)

We will now establish that R, is a consistent estimate of R. From Example 4.4 in
Chaganty (1997) we know that Z . can be written as :

2um=RmAmﬁm, (3.3)

where A,, is a diagonal matrix of positive elements. Since Z um —>¢R almost surely,
as m— oo, and decompositions (3.1) and (3.3) are unique, it is easy to see that
fu(pR) = f,,(R):I%, where R= lim,,_, R,,. Also for sufficiently large m, R, € %,
since J’?;, is an open set and 136 &,. Therefore,

Rum= 7 R) = £ (R)=R (3.4)
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in probability as m — co. Clearly R, is a consistent estimate of R. Therefore, the
modified estimate R.,, is also a consistent estimate of the true correlation matrix R.

Remark 3.1. From the above discussion it is clear that R, = fu“(ﬁ,,,) (ie. R, € %)
almost surely for sufficiently large values of m. In some longitudinal data analysis
problems it is possible that R, ¢ %,. We should view this outcome as an indication that
our assumption, var (;;) = ¢v(y;) may be incorrect and that the correct specification
might instead be var(y;;) = ¢;v(;). In either case, Rem =R, is a consistent estimate
of R.

Remark 3.2. Note that the unstructured working correlation can also be used to an-
alyze longitudinal outcomes that are not equally spaced; however, the timings of the
measurements should be the same for all the subjects.

3.2. Structured correlation matrix: Balanced and equally spaced data

When analyzing balanced and equally spaced data, use of a structured correlation
matrix is often preferable to the use of an unstructured matrix. One important advantage
afforded by fitting a structured matrix is that it will allow for parsimonious modelling
of the regression and correlation parameters.

The bias correcting technique that was used in Section 3.1 for unstructured correlation
can be stated more formally in the following theorem for structured correlation matrices.

Theorem 3.2. Let B,2, p and ¢ be fixed. Let R(a) be the working correlation struc-
ture, and assume that the true correlation R(p) is also structured, where x and p are
vectors in & which is a subset of 9. Suppose that the solution of the equation

-1
b(x,p)= [tr(MR(p))] =0 (3.5)
gx1

61j

is given by a= f(p), that is, b(f(p),p)=0 or equivalently b(x, f~'(2))=0, where
f is a continuous and one-to-one function. If 4, is the QLS estimate of % then the
C-QLS estimate p,, = f~'(3) is a consistent estimate of p.

Proof. Let ﬁm and &, be the QLS estimates of B and 2, respectively, when the working
correlation structure is R(x). Note that d,, is the solution of the equation

OR"(a) 4 )]
tr{i ——2Z,, =0, (3.6
[ ( adf gx1 )

where Z,, = (1/m) S Zi(ﬁm )Z,-(/;’,,, ). Since {?m — B, we have Z,, — ¢R(p) and there-
fore, 4, — f(p) in probability, as m — oco. Hence, §,, = f~'(d,) — p in probability as
m— 0o, This completes the proof of the theorem. [J
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Remark 3.3. An alternative view of our bias correcting technique can be summa-
rized as follows. Note that the expected value of Z,, =(l/m)z::."=l Zi{(B) Z{BY equals
@R(p). If we modify the estimating Eq. (2.3) so as to make it unbiased we obtain the
equation

-1
[tr(MMM - ¢R<p>>>] ~o0. (3.7)

a:xf gxl

To get a consistent estimate of the true correlation parameter p, we could directly
solve the unbiased estimating Eq. (3.7) replacing f with ﬁm, that is, replacing Z,
with Z,,. But there are two drawbacks to this approach: direct solution of Eq. (3.7)
requires estimation of ¢; and, for some common working correlation structures, even
if the working correlation is correctly specified, a feasible solution may not exist. Qur
method of estimation overcomes these drawbacks. Note that the estimates ﬁm, 3, and

P, satisfy
- . )
tr(gRa—w Z,,,)} =0 (3.8)
L Y a=in gx1
and
- o _
tr(w R(ﬁ,,,))] =0. (3.9)
61,- %=1,
L m gx1
Therefore, we have
r ~-1
o R (Zm — $R(,)) =0 V¢>0. (3.10)
61j A= gx1

Thus, the C-QLS method gives a solution to the unbiased estimating Eq. (3.7) that
does not depend on ¢. Moreover, the estimate g, of the true correlation parameter
exists, is feasible, unique, and easy to compute. The standard conditions required to
establish consistency are satisfied so that g, is indeed consistent.

Remark 3.4. Theorem 3.2 requires the specification of the working and the true un-
derlying correlation structure of our data. It will therefore be useful when the working
correlation is correctly specified, or when the function f(p) in Theorem 3.2 does not
depend on the structure of the true correlation matrix R. The latter situation occurs in
the analysis of balanced and equally spaced data if we choose an appropriate work-
ing correlation structure. For unbalanced and unequally spaced correlated data we will
assume that the former is true, that is, that we have correctly specified the working
correlation matrix. However, the correlation model that we consider in this paper is
extremely flexible and thus is appropriate for data that have a wide range of charac-
teristics that are typical for unbalanced and unequally spaced longitudinal data.
Because of this, and in the absence of appropriate alternative correlation structures, the
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assumption that we have correctly specified the working correlation model will be rea-
sonable in most analyses of unbalanced and unequally spaced longitudinal outcomes.
In many practical situations when the longitudinal data are balanced and are observed
at equally spaced time intervals, the correlation parameter % is a real variable and the
useful and popular working correlation structures are: (i) identity (R("); (ii) equicor-
related (R®)(%)); here all the off-diagonal elements equal z, (iii) AR(1) (R®)(x)); the
(i,j) element for this structure is given by «/"~/! and (iv) tridiagonal (R*)(2)); the ele-
ments just above and below the diagonal equal x and the others are zero. We observe
that if the working correlation matrix R(x) is AR(1) then the solution of Eq. (3.5) is

— — 2
=R s
2= fa(p)= P (3.11)
0 if p=0,

when the true correlation structure R(p) =R\, j=1,2,3,4. We exploit this important
observation to obtain a consistent and robust estimate of the true correlation parame-
ter p. Note that for AR(1) working correlation structure, the set &, of feasible values
of x is the open interval (—1,1) and the function f,(p) is a continuous, one-to-one
and onto mapping from % to %. The inverse mapping is

2u

et (3.12)

fi)=p=

Let ﬁnm and 4,, be the QLS estimates of B and x, respectively, when the working
correlation has AR(1) structure. Then it follows from Theorem 3.2 that

pam=fa—l(iam)_’p (313)

in probability as m — oo, when R(p) =R\ for j=2,3,4. We can easily check that if
x=0 then 4,m, as well as j,,, both converge to 0 in probability as m — oo, when the
true correlation matrix is R("), the identity matrix. Therefore, the estimate j,, of the
true correlation parameter p is consistent, feasible, and robust against misspecification
among the four most widely used correlation models for analyzing balanced and equally
spaced longitudinal data.

3.3. Unbalanced and unequally spaced data: Markov structure

Suppose that the longitudinal data are unbalanced and that n; measurements are made
on subject i at times 0<t;; <fip<--- <ty; 1<i<m. A suitable working correlation
for these unequally spaced repeated measurements is the generalized Markov structure
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given by
1 ’]e,: ’Ie,g +ée3 ']eiz +ej3te e
I]e'2 1 yf” ﬂeis +eig e tein,
peates  pes 1 .o prtest e
R ,'( x ) = .. . . . ,

€2 +e3+:rt+ein —1)

n nen

€i3 et e,

\ 'Iei2+ei.‘+"'+ein,- N

ﬂei"i l
(3.14)

where x=(2; =1, %, =21) and the ex’s are functions of the parameter A defined as
follows:

th—t
. Vie ~ -] ik -u] if 1#0,
ex(A)= A (3.15)

IOg([,'k) - log(t,»(k_l)) if A=0,

for 2<k<n;; 1<i<m. The feasible range for the parameter A is (—00,00) and 7 is
restricted to (0,1). We will discuss the bias correction for this structure in Section 3.4,
but first we consider the Markov correlation model, the important special case of the
generalized Markov structure when 4 = 1. The Markov structure is appropriate when the
correlation between unequally spaced measurements collected on a subject decreases
with increasing separation in time. Here, ey = [tk — tix-1)); 2<k<nm; 1<i<m. The
correlation parameter 2 =pn is a real variable and is restricted to the interval (0,1).
Let us assume that the working correlation is the Markov structure and it is correctly
specified, that is, the true correlation structure R; is also given by Eq. (3.14) and A= 1.
The bias correcting equation in this case is

il IR (2) =
n; 2e,-k129'*" _ pe,-keik[xe,*—l +“3e,-k—l]
i=V k=2 [l — y2ei ]2
- (3.16)

Note that Eq. (3.16) reduces to Eq. (3.12) when the data are balanced and equally
spaced, that is, n; =n and e; =1 for all i and k. Let 4, be the QLS estimate. The
bias corrected estimate is then obtained by solving the equation

B(Gm, p)=0 (3.17)
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for p. That is, given 4, the bias corrected estimate j,, satisfies the equation

m Qe izm—l LN [xe.k— +13e,k 1
s = ) (3.18)
§k=2 [1- 2e”‘]z :Z-:l Z=: [1- *f"e,k]z

where e = [tix — tig—n)); 2<k<n;; 1<i<m. That there is a unique solution 5, for
Eq. (3.18) that lies in the interval (0, 1) can be shown as follows. Let us denote the
Lh.s. of Eq. (3.18) by c. Let

e,k e [1&& + 3 ‘*3€.k 1]

3.19
[l —dp" P G

m n;

Hp)=3 3. 2
i=1k=2

Clearly, the function h(p) is a continuous and increasing function of p, since 4, €
(0,1) and the e;;’s are all positive. Also A(0)=0 and we can easily verify that A(1)>c.
By the mean value theorem we conclude that there exists a unique g, € (0,1) such that
h(p,)=c. The estimate g, can be computed numerically using the bisection method.

3.4. Unbalanced and unequally spaced data: Generalized Markov structure

The Markov structure is widely used when the intra-subject correlation of measure-
ments decreases with increasing separation in time. However, this structure may force
the intra-subject correlations to decrease too rapidly with increasing separation in time
and it does not take into account the actual timings of measurements in the study.
When the primary outcome of interest stabilizes over time within subjects, two succes-
sive measurements collected on a subject later during the study will be more highly
correlated than if they were collected earlier, so that the correlation between these
measurements will depend on their time of occurence in the study. The generalized
Markov structure generalizes the Markov model so that the decrease in intra-subject
correlations may be dampened (or accelerated) with increasing separation in time. It
also allows for stabilization in the outcome variable over time; see Nufiez-Anton and
Woodworth (1994) and Shults and Chaganty (1998) for a detailed discussion of these
structures.

Suppose that the true and working correlation structures both are generalized Markov.
Let x=(n, 4) and p=(#,4). For convenience of notation we will supress the argument
A and write e;; for ejx(4) and & = e,k(}- ). Since we have unequal number of observa-
tions on each subject the appropriate bias correctmg equations analogous to Eq. (3.5)
are the following two equations:

m -1
by(a,p)= ;t ( an (a)R( )) (3.20)
and

m —1
bz(a,p)zgtr( (= )R( )) @321
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Let 4, = (m, Am ) be the QLS estimate of x = (1, 2). The C-QLS estimate ﬁgm = (ﬁm,z,,,)
is obtained by solving for p simultaneously the equations b,(dy, p) =0 and b2(dm,p)=
0, which after simplification reduce to the following two equations:

m o m B, péie—1 2 Eik _ €k 26k
éunst ' 20 L (4 _ (3.22)
izl k=2 (L =nm* ) :
and
m éik Leik 24 i _ -e-"‘(l + ¥ 26k
g g M iz Lot — TR (323
i=1k=2 (1 = nm*)?
: J J ) A
deye  tp(log(tin)) — £ _py(logltiw-1)))  6F — 4
where é;x =ej(in) and —i’i= th OBtk 'fk DR . ~2(k 2
(3/.,,, m Am

We used the MATLAB Optimization Toolbox routine ‘CONSTR’ to obtain the QLS
estimate 4, = (f,, 4m) and the MATLAB routine ‘FsoLVE’ to solve Egs. (3.22) and
(3.23) to obtain C-QLS estimate ﬁgm =(#],5,Am ) in the example discussed in Section 5.2.

4. Consistent estimate of the scale parameter

Now, suppose that the scale parameter ¢ is unknown. In this section we will obtain
a consistent estimate of ¢ for working correlation structures that are appropriate for
balanced and equally spaced observations and also for unbalanced and unequally spaced
longitudinal data.

4.1. Balanced and equally spaced data

Suppose that the longitudinal data are balanced and are observed at equally spaced
time points. In Theorems 4.1 and 4.2, we obtain a consistent estimate of ¢ when the
working correlation is unstructured and structured, respectively.

Theorem 4.1. Let § and ¢ be fixed. Let Q(B, R(%)) be as defined in Eq. (2.1). Let R be
the true unknown correlation matrix. Assume that the working correlation structure
is totally unspecified, that is, R(x)=R. Let ( ﬁﬂ,m, Rn) be the solution of the Egs. (2.2)
and (2.3). Let R.,, be as defined in Eq. (3.2). Assume that the conditions of Theorem
5.1 in Chaganty (1997) hold. Then

OBy Rem) _
mn

¢ N CRY)

in ;)robability as m— oo.

Theorem 4.2. Let p,o and ¢ be fixed Let Q(B,R(%)) be as defined in Eq. (2.1). As-
sume that the working correlation structure is AR(1), that is, R(a)=R®)(x). Let
(Bs%am) be the solution of the Egs. (2.2) and (2.3). Let p,, be as defined in
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Eq. (3.13). Assume that the conditions of Theorem 5.1 in Chaganty (1997) hold.
Then

o R
Q(/am (pam )) — d) ' (42)

mn

in probubility as m— oo, when the true correlation structure R, is any one of the
following: (i) equicorrelated, (ii) AR(1) and (iii) tridiagonal. Further, if p=0 than
Eq. (4.2) also holds, when R equals the identity matrix.

The proof of Theorem 4.2 is given in the appendix, Theorem 4.1 is proved similarly.
From the above theorems we can see that a consistent estimate of ¢ is

(4.3)

. =

+f OBy Rem)/mn if R(x)=R,
OB, RN pym))mn i R(x)=RCN(2).

Since the QLS estimates partially minimize the quadratic form (2.1), in practice for
small samples, the estimate ¢ will be smaller than the popular consistent estimate of

¢ given by

\ OB, I)Jmn  if R(z)=R,
= - 44
% { OB, 1)mn if R(2x)=RP(2), (44)

where / is the identity matrix. Therefore, a good consistent estimate of ¢ is ¢A>y==
min(d;c, (ﬁp), since it yields shorter width confidence intervals for linear functions of B

than ¢3p or ¢,.
4.2. Unbalanced and unequally spaced data

Suppose that we have n; observations measured on subject i and that these observa-
tions may be unequally spaced in time. Assume that the working correlation structure is
correctly specified and that it is Markov (generalized Markov). Let f,, and f,, be the
C-QLS estimates of the regression parameter f and the true correlation parameter p,
when the working correlation is Markov (generalized Markov). Let

.1 2 ZNB)ZBym)

¢P “m i=1 n; (43)
and

L ZUB IR (Bw)ZiB)

¢c - ;; 1=Zl n; s (46)

where the correlation matrix R; is given in Eq. (3.14). A good consistent estimate of
¢ is given by ¢, = min(¢,, ¢,).
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5. Examples

To contrast the QLS modified regression, correlation and scale parameter estimates
described in Sections 3 and 4 with the corresponding GEE estimates, in this section
we present the results of two analyses. The first is of balanced, equally spaced data,
for which the AR(1) and the unstructured are teasonable candidates for a working
correlation model. The second is of unbalanced. unequally spaced data, for which the
Markov and generalized Markov structures are appropriate.

5.1. Analysis of balanced and equally spaced data

Here we analyze the longitudinal data displayed in Table 1 of Potthoff and Roy
(1964). The data were collected in a dental study of 27 subjects (11 girls and 16 boys).
They comprise measurements (y;;’s), in millimeters, from the center of each subjects
pituitary to pteryomaxillary fissure recorded at 8, 10, 12 and 14yr of age. Jennrich
and Schluchter (1986) analyzed these data using maximum likelihood procedures to
illustrate the use of different covariance structures to model repeated measurements.
We fit the following regression model (Model 2 in Jennrich and Schluchter (1986)):

pij = Pyxin + Poxia + YgXin *Xj3 + yexiz ¥ X3, 1</ <4, 1<i<27, (5.1)

where x;;, x;; are indicator variables for the two sexes, girl and boy, respectively. The
covariate x;3 is the subject’s age at the jth measurement time. It takes the values 8,
10, 12 and 14.

Table | contains estimates and standard errors for the regression parameters and the
estimate of the scale parameter, computed using the GEE and C-QLS methods. The
estimates were computed using both the AR(1) and the unstructured (UNSTR) working
correlation matrices. The GEE estimates were obtained using PROC GENMOD in SAS
version 6.12. The standard errors of the regression parameters were computed using
the model-robust, sandwich-type estimator; see (5.10) in Chaganty (1997).

Table 1
Regression analysis of a dental study data using GEE and C-QLS methods with AR(1) and unstructured
working correlation matrices

Parameter  GEE C-QLS

AR(1) UNSTR AR(D) UNSTR

Est. Std. Est. Std. Est. Std. Est. Std.
By 17.3213 0.7780 17.3973 0.7244 17.3215 0.7776 17.4018 0.6972
By 16.5946 1.2788 16.3236 1.1701 16.5931 1.2781 16.0523 1.1288
g 0.4838 0.0629 0.4781 0.0639 0.4837 0.0629 0.4770 0.0632
b 0.7965 0.1050 0.7881 0.0983 0.7695 0.1049 0.8122 0.0939

¢ 4.9107 4.9058 49106 4.9076
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Table 2

Estimates of the working correlation matrices. C-QLS (GEE) estimates are above (below) the diagonal
AR(D) UNSTR

— 0.6099 0.3720 0.2269 — 0.5284 0.6609 0.5084
0.6135 — 0.6099 0.3720 0.5010 — 0.5551 0.7034
0.3764 0.6135 — 0.6099 0.7363 0.5553 — 0.7269
0.2309 0.3764 0.6135 — 0.5149 0.6208 0.7788 —
Table 3

Regression analysis of audiology data using C-QLS

CORR By (SE) B, (SE) B, (SE)
MARK 16.99 (3.35) 2.31 (0.32) —0.05 (0.01)
GMARK 18.67 (3.60) 1.92 (0.31) —0.03 (0.01)

Estimates of the working correlation matrices are displayed in Table 2. It is clear
from Tables 1 and 2 that the estimates obtained by GEE and C-QLS are in reasonable
agreement, but with one exception. The standard errors of the regression parameter
estimates obtained by C-QLS are smaller than, and hence preferable to, those obtained
by GEE.

5.2. Analysis of unbalanced and unequally spaced data

In this section we apply the Markov and generalized Markov structures using the
C-QLS approach to estimation of the parameters. As discussed in Shults and Chaganty
(1998), the GEE method often yields infeasible correlation parameter estimates for
the Markov structure. It is also difficult to apply GEE using the generalized Markov
model because moment estimates for its parameters are not easy to obtain. Both these
correlation structures were not implemented in the SAS, version 6.12, GEE procedure
PROC GENMOD.

The data we examine (see Table 3 of Nurdez-Anton and Woodworth, 1994) were
also analyzed by Shults and Chaganty (1998). They comprise measurements collected
during a study to compare two cochlear prostheses implanted in a group of postlin-
gually deafened adults. The study outcome is the percentage of sentences recognized
on a sentence recognition test that was administered at 1, 9, 18, and 30 months post
implantation. Because not all subjects completed all four sentence recognition tests, the
data are unbalanced and unequally spaced in time.

Our final regression model for the marginal mean of the outcome variable (1)
agrees with the final model fit by Ninez-Anton and Woodworth (1994)

ij = Po + Pt + Bata, (5.2)

where #;; is the month of measurement and ¢, =t,.21. Table 3 contains estimates and
standard errors for the regression parameters that were computed using C-QLS and the
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Table 4

C-QLS estimates of the correlation between successive measurements

CORR 1 and 9 mo. 9 and 18 mo. 18 and 30 mo.
MARK 0.9168 0.9069 0.8778
GMARK 0.8442 0.9433 0.9564

Markov (MARK ) and generalized Markov (GMARK) working correlation models. The
robust standard errors were obtained using (5.10) in Chaganty (1997). As can be seen
in Table 3, fitting the generalized Markov structure yields an estimated constant that is
slightly greater in value and coefficients associated with the timings of measurements
that are slightly smaller in value than the corresponding coefficients obtained by fitting
the Markov model.

Most interesting however, is the difference between the correlation estimates that are
obtained by fitting the generalized Markov as opposed to the simpler Markov model.
The generalized Markov model allows us to model the intra-subject correlations in
a manner consistent with the findings of Gantz et al. (1988), who observed that there
is a ‘definite learning curve involved with the use of cochlear implants’. This implies
that the correlation between two measurements will be greater if the measurements are
collected on a subject later during the study, rather than earlier. Table 4 contains the es-
timated correlation between two successive measurements on a subject for the Markov
(MARK) and the generalized Markov (GMARK) correlation structures. (These esti-
mates are based on g, =0.9892 for the Markov structure and (ﬁ,i) =(0.9305, 0.0612)
for the generalized Markov structure.) As is shown in Table 4, the generalized Markov
structure yields what we expect for the audiology data- increasing intra-subject corre-
lations over time, whereas the Markov structure forces a decrease in the correlation
between the successive measures on each subject.

While modelling intra-subject correlation is not our primary goal, fitting the corre-
lation structure that is most reasonable for our data analysis situation should yield the
best results in terms of analysis of our main parameter of interest. In any case, it would
be contrary to the tradition of statistical modelling to assume that fitting the model that
does not best approximate reality would yield optimum results for our data analysis
problem. The ability to fit the generalized Markov structure, the structure appropriate
when the outcome variable stabilizes over time, is thus an important advantage afforded
by the C-QLS approach over GEE.
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Appendix

Proof of Theorem 4.2. Let 6=(, p), » and ¢ be fixed. Assume that the working corre-
lation structure R(x) is AR(1). Suppose that 0,=(B,,» 2am) is the solution of Egs. (2.2)
and (2.3). Let 6.=(B,,,. p.n,)» Where j,, is defined in Eq. (3.13). Assume that
the conditions of Theorem 5.1 in Chaganty (1997) hold. Let v(0)=Z/(f)R™ YP)Zi( ).
Since Y., Vi, ) =0, using Taylor series expansions we can write

Zv,(e )—Zv,<0)—(9 -0y ZVv,(0)+(0 —0)—Zv2v.(0*)(0 - 0)

i=1 i=]

=(0. - 0y z V(6 X0 — 6)
+(6. — 0= ZVZV,(O* X0, — 0), (A.1)

where 0*, 6** are points on the line joining éc and 0, and the line between éa and 0,
respectively. From Eq. (A.1) we get

l m
~ [Z w(8) — 3. vi(Be )] = (0. - 0y —zvz (0** )0, - 0)

j=1 i=1

~(0. -0y 5~ szv.w*)(e - 0). (A2)

Since (0. — 8)—0 and (6, — 0), (1/m)Sr, V2vi(0*), (1/m)3S 1, V2vi(6**) are
bounded in probability, from Eq. (A.2) we get
% [Z vi(0) — > Vi(ér:)] —0 (A3)
i=1 i=1

in probability as m — co. By the weak law of large numbers we also have
| _ _
— 2 v(0)— ¢ tr(R™(p)R), (A4)
i=1

in probability as m — oco. It is easy to verify that tr(R~'(p)R)=n when R is any one
of the following structures: (i) equicorrelated, (ii) AR(1), and (iii) tridiagonal. We
can now see that Eq. (4.2) follows from Egs. (A.3) and (A.4). When p=0 and the
true correlation is the identity matrix, we can verify that (. — 6)— 0 in probabil-
ity as m — 0o. Thus (A.3) also holds in this case. This completes the proof of the
theorem. O
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-Loss in Efficiency Due fo Misspecification
of the Correlation Structure in GEE
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1. Preli'minziried; In this paper we will need the following matrix version of 4the Cé.uchy-
Schwartz inequality.

Theorem 1. Let B;, Di, 1 £i < m, be matrices of ordert X p. Let £;, 1 < i < m be
positive definite matrices of order ¢t. Then

m -1 /m m o -1 m -1 '
(o) (Ene) (o) -(Era)
im1 iml (im1 im1
is nonnegative definite, assuming that the inverses in (1) exist.

2. Qptimal Estimating function. The longitudinal data analysis problem considered
by Liang & Zeger (1986) can be described briefly as follows: Let {Y;, 1 < i < m} be inde-
pendent vectors such that E(Y;) = p;(8) and covariance matrix I; = A}/2(8) R 4}/%(8),
where R is the true correlation between the components of the vector Y; assumed to be
the same for all 1 < i < m. The mean vector ui(f) and the diagonal variance matrix
A;(B) are assumed to be known functions of Spx1. The problem is to estimate the un-
known regression parameter 8. Following the ideas contained in Godambe (1960) and
Godambe & Kale (1991), let us consider the class of unbiased estimating equations

G= {f:asm'-u.-(ﬂ))=0} o )
=1

where B;, 1 <i < m, ace t X p matrices. Let D;(8) = 9 u;/0 ' be the matrix of partial
derivatives of order ¢ X p. For each estimating function g € G, let
1

M, = (i}s;bi)-l (gag i Bi) (g D} Bi)- : 3)
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The matrix M, in (3) is the covariance matrix of the sta.nda.rdized-version, gs =

(E(89/8B))! g, of the estimating function g (see Godambe & Kale (1991), p. 14). Note
that when B; = £7 D;, the matrix M, = M-, where M. = (E:;l Dz Di)-l- By
Theorem 1 we have that M, — M- is nonnegative definite for all g € G. Therefore,
if R is known the optimal estimating function for 4 in the class G is given by ¢* =

=1 DiZ7H(Yi = pi(B)). Since in Practice the true correlation R is unknown, Liang
& Zeger (1986) have suggested that we replace by a working correlation structure
R(e), which is assumed to be a function of @. The estimate of B is obtained by solving
the generalized estimating equation (GEE), g, = = D 2Ny - #i(B)) = 0, where

Zwi = A;%(8) R(a) 41 3). |

3. Loss in Efficiency. Since g° is the optimal estimating function, a measure of
efficiency of the estimating function g¢,, is given by effy(g,) = |Mg= /1M, |, if we use
determinant optimality criteria or effi(g9w) = tr(M,- )/tx(M,,), if we prefer the trace (tr)
optimality criterion. The loss in efficiency due to misspecification is given by Ly(g,) =
(1 = effa(g)) or Li(gw) = (1 = effi(g9w)). The quantities Li(9w) and Ly(gy) can be
estimated by replacing 3, @ and & by the GEE estimates given in Liang & Zeger (1986).
We suggest that, in the analysis of longitudinal data one should try several working
correlation structures and choose the structure that yields the smallest value for Li(gw)
or Le(gw). , ‘ Co
BIBLIOGRAPHY ;

Liang, K-Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalised linear
models. Biometrika 73, 13-22. .

Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation,
Ann. Math, Stat., 31, 120&12. : )
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Functions, (V. P, Godambe, ed.) 3-20. Oxford: Oxford University Press.

Summary: The concept of a working correlation structure was introduced by Liang
& Zeger (1986) to analyze a longitudinal data analysis problem via generalized estimating
equations (GEE). In this paper we first derive.the optimal estimating function for the
longitudinal data analysis problem using the criterion given in Godambe & Kale (1991).

is not the true correlation structure, that is, if it is misspecified. Our method also serves
2s a tool for choosing a working correlation structure that maximizes efficiency in finite
samples. , ' - ,

Résume. Liang et Zeger (1986) ont présentéle concepte d'une structure de corrélation
afin d’analyser le probleme d’analyse de données longitudinales par des équations
généralisées d’estimation (EGE). Dans cette étude nous dérivons d’abord la fonction
optimale de calcul approximatif pour le probléme d’analyse de dohnées longitudinales en
utilisant les critéres de Godambe et Kale (1991). Nous proposons ensuite une méthode
pour calculer la perte d’efficacité si la corrélation proposée n'est pas I'exacte structure de
corrélation, c'est-i-dire, si elle est mal spéficiée. Notre méthode sert également d’outil
pour choisir une structure de corrélation qui porte au maximum I'efficacité des échantillons
finis. .
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1. Summary

The growth curve model of Potthoff and Roy (1964) has been studied extensively by
numerous authors via the maximum likelihood method, under the assumption of normality
for the outcome variable. In this paper we apply the method of quasi-least squares developed
in Chaganty (1997) and Chaganty and Shults (1999) for estimating and testing a hypothesis
concerning the parameters in the growth curve model when the normality assumption is not
satisfied. Large sample properties of the estimates and the test statistic are also presented.

2. Quasi-least squares estimates

The growth curve model is defined as Ypun = Bpxm Amxr Arxn + Epxn where Y is
the response matrix consisting of p repeated measurements taking on n individuals, A is an
unknown parameter matrix, A and B are known within-subject and between-subject design
matrices of ranks m and ¢ respectively. We assume that the error matrix E has zero mean and
cov (vec (E)) = 021, ® R(a), where vec (E) is the pn x 1 column vector formed by stacking the
columns of the matrix E. Here I, is the identity matrix and R(c) is a correlation matrix that
is a function of the unknown parameter a. Several authors have studied this model under the
assumption that E has a matrix normal distribution. We do not make any such assumption
in this paper. The method of quasi-least squares developed in Chaganty (1997) and Chaganty
and Shults (1999) is based on minimizing the objective function

Q(A, o) =tr ((Y-BAA)R () (Y -BAA)). (1.1)

Equating to zero the partial derivatives of (1.1) with respect to A and a, we get

A=BRY2o)B)'B R o) YA'(AA)™! (1.2)
and
tr (a—% R Ya) U(A)) =0 (1.3)

where U(A) = (Y = BAA)(Y - BAA). Let (A, & be the solution of the equations
(1.2) and (1.3). We can show that & is asymptotically biased as n — oo, since the estimating
equation (1.3) is not unbiased. However, the solution & of the estimating equation

tr (—a— R (o)

P _ R(a)) =0 (1.4)

a=a




|

D

is a consistent estimate of a. We shall call & the quasi-least squares estimate of o. If the
correlation matrix R(a) has the AR(1) structure, we can verify that &@ = 2&/(1 + @?®). The
quasi-least squares estimates of A and o? are given by

A=(BR'B)'BR'YA(AA) and 3 =tr (R7'T))/pn (1.5)

where U = U(A) and R = R(@). The large sample properties of the quasi-least squares
estimates are established in the following theorem:

THEOREM 1. Fiz A, o and o%. Let Z, & and 6% be the quasi-least squares estimates of A, «

and o? respectively. Assume that the matriz W = A'(A A")~Y/2 = (wy;) is such that max;; w};

converges to zero as n — 0. Then as n — 0o,

(a) vec ((K —-A)(A A')I/Z) converges in distribution to a multivariate normal distribution
with mean zero and covariance matriz o° L ®(B' R~'(a) B) ™.

2

(b) & — o and 6% converges to o* in probability.

3. Test of Hypothesis

We now consider the problem of testing Hy : DAE =N wvs H, : DAE # N, where
Dgxm and E, 4. are known matrices of ranks d and e respectively. In most situations the matrix
N is the null matrix. Let A be the estimate obtained minimizing Q(A, &) with respect to A,
subject to the restriction D A E = N. It is easy to verify that

A=A+(BR'B)'DIEAA)? (1.6)
where X = (D (B'R-!B)~! D')"' (N — DA E) (E' (A A")"! E)~'. We propose the test statistic
T=tr (B(B'R'B)'B)'B(A-A)AA B~ AYB') /5% (1.7)

Large values of T are considered to be significant and the theorem below is useful for determining
the critical values.

THEOREM 2. Assume that the conditions of Theorem 1 hold. Then as n — oo, under the null
hypothesis Hy : D A E = N, the distribution of T converges to a central x? with pr degrees of
freedom.

To test the hypothesis Hy, we could also use other multivariate tests based on the eigenvalues
of the matrix in (1.7) instead of the trace.
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1 Introduction

In many practical situations, observations on n experimental units (or subjects) are made on a
set of p response variables (or characteristics) at ¢ occasions. Thus on each experimental unit
we have a p x t matrix of observations. These data are termed as multivariate repeated measures
data, or multivariate longitudinal data, or multi-response growth curve data. Few examples of
the experiments that yield multivariate longitudinal data are given below.

e In an experiment to study the effect of iron with vitamin C supplement, n subjects
may be classified into one of the three groups: Group 1 receiving 15 mg elemental iron
with 25 mg vitamin C three times a day, Group 2 receiving 15 mg iron with 50 mg
vitamin C three times a day and Group 3 receiving simply 15 mg iron three times a day.
Measurements, using the blood sample, may be collected on the variables: serum iron,
ferritin, transferrin saturation, hemoglobin, hematocrit, and total iron binding capacity
(TIBC). Observations on these six variables (p = 6) may be made at each of the three
time periods (¢t = 3).

e In an experiment where a new drug for AIDS is being tested, on each of the n subjects
data on three variables (p = 3) (TMHR scores, Karofsky scores, and T-4 cell counts) at
three time periods (¢ = 3) during the study (at the beginning, after 90 days of treatment,
and after 180 days of treatment) are collected. These data will be analyzed in Section §
of this paper.

e An experiment in dental study concerns with the relative effectiveness of two orthopedic

~ adjustments of the mandible. Nine subjects are assigned to each of the two orthopedic
treatment groups known as activator treatments. The measurements are made on three
characteristics (p = 3) to assess the changes in the vertical position of the mandible at
three time points (¢ = 3) of activator treatment. We will also analyze these data in
Section 5.

Suppose we have n subjects (possibly randomly assigned to g groups) on which the measure-
ments are made on p response variables at ¢ occasions. Let y;jx be the observation on the jth
response variable taken at the kth time period or occasion corresponding to the sth individual.
Here1 <i<mn,1<j<p, 1<k<t Also, associated with each of the n subjects, suppose we
have measurements z;jx taken on g covariates (1 <! < q). The covariates could be categorical,
and they may' or may not change with time. Let

!
Ti = (zilllv ooy Tiplls Ti12ly oy Tip2ly »oos Tiltly <oy $iptl)

be the vector of observations on the lth covariate taken on the ith subject. Let X; =
[i1 1 ...t Tig) ptxq be the matrix of measurements taken on the g covariates associated with
each response variable at the ¢ occasions on the ith individual and
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Yipt ... VYipt pxt

be the matrix of measurements taken on the response variables on the ith individual. Suppose
that the expected value and the covariance matrix of y; = vec(Y;) are E(y;) = pi(8) =
X, and Cov(y;) = Q respectively. Analysis of these data is complicated by the existence
of correlation among the measurements on p different variables together with the correlation
among measurements taken at ¢ different occasions. The form of the covariates, that is, whether
they are subject specific, time varying, or varying with the response variables may further
complicate the analysis. However, assuming that the data on each individual come from a pt
dimensional multivariate normal distribution with dispersion matrix 2, the maximum likelihood
estimator of 3 can be obtained as a function of  and inference can be performed using the
standard asymptotic theory of maximum likelihood estimators. Some general discussion of this,
using a mixed model approach, in an applied point of view can be found in Khattree and Naik
(1999).

If the data do not come from a multivariate normal distribution or if the response vari-
ables on which data are collected are not continuous then the standard methods do not readily
apply. Recently, Chaganty (1997) introduced a new method called “quasi-least squares” for
analyzing longitudinal data. This method is an alternative to the GEE method of Liang and
Zeger (1986) and its various variations. Quasi-least squares method was developed to overcome
some of the pitfalls of the GEE method (Crowder, 1995). Unlike the GEE method which can
yield non-feasible and inconsistent estimates for the correlation parameters, Chaganty (1997)
and Chaganty and Shults (1999) have shown that the “quasi-least squares method” always
yields feasible and consistent estimates for the correlation parameters. Quasi-least squares
method has been successfully utilized in various practical problems involving unbalanced and
unequally spaced data. See Shults and Chaganty (1998) and Chaganty and Shults (1999).

It has been observed by Boik (1991) and Naik and Rao (1997) that assuming a Kronecker
product structured covariance, that is, @ = @ ® 9, where {; and Qs respectively are ¢t x ¢
and p x p positive definite matrices, has many advantageous in analyzing multivariate repeated
measures data. Further the linear model with this covariance structure reduces to the well
known Zellner’s Seemingly Unrelated Regression (SUR) model when @, = I. Hence in this
article we will consider Kronecker product covariance structure for the dispersion matrix of y;.

The main focus of this paper is to implement the quasi-least squares method for analyz-
ing multivariate longitudinal data assuming a scale multiple of Kronecker product correlation
structure for the covariance matrix. The organization of the paper is as follows. In Section 2,




we will describe the quasi-least squares method as applied to the present situation. We also
present a discussion of the optimality of the estimating equations and an iterative algorithm
for the computation of the estimates. In Section 3, we will derive closed form solutions for
the estimates of the correlation parameters for some popular correlation structures. In Sec-
tion 4, we will derive the joint asymptotic distribution of the quasi-least squares regression and
correlation parameter estimates. We also present a test statistic for testing linear hypothesis
concerning the regression parameter 3 and derive its asymptotic distribution. We will present
the analysis of two data sets in Section 5 and finally end with some concluding remarks.

2 The method of quasi-least squares

For analyzing multivariate repeated measures data that are continuous non-normal or cate-
gorical we adopt the quasi-least squares method, described in Chaganty (1997), and the bias
corrected version of the correlation parameter in Chaganty and Shults (1999). To put the
problem in a slightly general frame work we assume that

E(y;) = pi(B) = 9(XiB), (2.1)

where as before X; is the pt x ¢ design matrix, 8 is a ¢ x 1 vector of unknown parameters and
the inverse of g is a known link function. Further assume that the covariance matrix of y; is

Q= ¢ A'(B) (Rr(a) ® Rp(~)) A”*(B) = $%i(6) (say) (2.2)

where 8 = (B, o, v) and Rr(ca) and Rp(y) respectively are correlation matrices of order
t x t and p x p, which are functions of the vectors a and +y respectively. The correlation matrix
Rr(a) represents the correlation among the ¢ repeated measurements over time, whereas, Rp()
represents the correlation among the p response variables. The pt x pt diagonal matrix A} /2 (B)
contains the standard deviations and ¢ is an overdispersion or a scale parameter. The mean-
covariance model (2.1)-(2.2) encompasses several discrete and continuous models. While the
main parameter of interest is 3, the parameters «, y and ¢ are nuisance parameters.

2.1 Estimating equations

Here we describe the method of quasi-least squares. This is a two stage procedure. In the first
stage we minimize with respect to 3, a and v the quadratic form




(i — wi(B)) A7*(B) (R7 (@) ® Rp* (7)) A7 V2(B) (wi — ma(B))
=1

n

)

=" z(B) (Rr'(e) ® Rp'(7)) «(B) (2.3)
i=1

where 7(8) = A7 /2(8) (yi—pi(B)) with (4;%(8)) ™ = A;/*(8). Note that ;(8) = vee (Z:(8))
where

Zi11 .-+ Rjilt

Z;(B) = [ oo }

Zipt ... Zipt pxt

Since

tr (Rz'(e) Z{(8) Rp' (1) Z:(B)) = vec(Zi(B)) (R7'(e) ® Rp' (7)) vec (Z:(8))
= 2(B) (Rr'(e) ® Rp'(7)) z(B)

we can rewrite the quadratic form (2.3) as

tr(Rr () Ty ZUB) Rp' (1) Zi(B) = nptr(RrH(@) U(B, 7)) (2.4)

and also as
tr(Rp' (v) Lo Zi(B) R (@) Z{(B)) = ntir(Rp(M)V (B, ) (2.5)

1 n
where the matrix U(8, v) = n—pZZ£(ﬂ) R3!(7y) Zi(PB) is of the order t x ¢t and V(B, a) =
i=1
n
7—3—; Z;(B) Ry'(a) Zj(B) is of order p x p. Equating to zero the partial derivatives of (2.3),
=1
(2.4) and (2.5) with respect to 3, @ and +y respectively, we obtain the following three estimating

equations:

S DY(B)ATV2(B) (Byl(e) ® BF (1) #(6) = O (26)
=1
tr (LR(I;I(—Q)-U(/B, 'y)) = 0 (2.7)
tr (aRla_’;”)V(ﬁ, a)) =0 (2.8)

where D;(8) = 0u; /9. Let 8 = (B, &, 7)' be the solution of the above three equations. The
estimate (3 is consistent but the estimates & and 7 are asymptotically biased (see Theorem 4.1).
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The main reason being the estimating equation (2.6) is unbiased whereas the equations (2.7)
and (2.8) are not unbiased. The second stage in the quasi-least squares method consists of

solving the two equations

(aRga( @) - RT(a)) =0 (2.9)
and
-1
tr (6—3-57& . Rp('y)) —0 (2.10)

to obtain consistent estimates @ and ¥ of a and <y respectively. Let ﬁ =p (or the estimate
obtained solving the equation (2.6) substituting & and ¥ for @ and <y respectively). We shall
call the estimates ,5, @ and 7 as the quasi-least squares estimates of (3, o and 7y respectively.
Finally, a consistent estimate of ¢ is given by

¢ = min (41, $2) (2.11)
where
2k (w- () (Br(@ @ Re@) ! (ui - mi(B))
¢ = nip
and

D >3 (.} I (PR (0))

¢ =

ntp

2.2 Optimality of the estimating equations

It is well known that, when o and -y are known, the function

a1(8, @, 7) Z Di(B)A72(8) (R7 (@) ® Rp (7)) #(B) (2.12)

is the optimal unbiased estimating function for estimating 3 according to Godambe’s criterion
(see Godambe (1960), Heyde (1997, page 22)). Since E(U(B, 7)) = ¢ Rr(a), the function

92(,Ba a, 7, ¢) = (aRga( ( (ﬂa 7) - ¢RT(a)))




is clearly unbiased. Also, since Q_Iig__(_a_) == R,;l(a) H_BZO%C_Q %l(a), using the properties of

[¢]
trace and Kronecker product (Rao and Rao, 1998, page 202) we can verify that

08, a, 1, ¢) = _<§£EE§R_T(2)_)

EpS ) (Rr(a) ® Rr(a))™" (vec(U(B, 7)) — dpvec(Rr(a))).

(2.13)

When 3, v and ¢ are known, the unbiased estimating function (2.13) is the optimal estimat-
ing function for estimating o if a constant multiple of Cov (vec(U (8, 7))) is used in place of
(Rr(a) ® Ry(a)). But Cov(vec(U(B, 7)) depends in general on the fourth moments of the
y;’s and we have no assumptions made concerning the fourth moments. However, note that
if the y;’s are normal then Cov (vec(U(B, 7))) is 2¢ (Rr(a) ® Rr(c)). Thus the estimating
function (2.13) is the optimal unbiased estimating function for the parameter & when the y;’s
are normally distributed and the other parameters are known. And it will be close to the
optimal unbiased estimating equation whenever a constant multiple of Cov (vec(U(B, 7))) is
approximately equal to (Rr(a) ® Rr(e)). Similarly, since E(V (8, @) = ¢ Rp(7), the function

1
08,0, 7,8) = br (QR—gv(—”)(V(ﬂ, a)—¢RP(v)))

is unbiased. And if the y;’s are independent and normally distributed we can check that
Cov (vec(V (B, a))) = 2¢ (Rp(v) ® Rp(y)). Therefore, the function

56,2, 9) = - (ZEEEDY (Rpr) @ Re) ™ (oeelV (8, @) = guect Rp()
| (2.14)

is the optimal unbiased estimating function for estimating y when 3, o and ¢ are known,
if the y;’s are normally distributed, and is close to being optimal if a constant multiple of
Cov (vec(V (B, @))) is approximately equal to (Rp(y) ® Rp(7)). Now from (2.7), (2.8), (2.9)
and (2.10) we can see that the quasi-least squares estimates satisfy g1 (ﬁ, a,y) =0,

tr (?-R“‘T;@ W@ - ¢RT(a)>) =0 (215)
and
tr (m (V(B, &) — ¢RP('7))> =0, (2.16)
oy =7

for all ¢. In particular the equations (2.15) and (2.16) are satisfied when ¢ = #. Thus the
method of quasi-least squares provides a feasible solution to the unbiased estimating equations
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g; =0, for i = 1,2,3. If the data is from a normal population then these three equations are
also the optimal unbiased estimating equations according to Godambe’s criterion. Regardless
of normality, closeness of these estimating equations to optimality corresponds to closeness of
(constant multiples of) Cov (vec(U(B, v))) and Cov (vec(V (B, @))) to (Rr(a) ® Rr(a)) and
(Rp(y) ® Rp(7)), respectively.

2.3 Algorithm

In general a closed form solution does not exist for the estimating equations (2.6), (2.7) and
(2.8). And we need to solve those equations using a recursive procedure like the Newton-
Raphson method. An iterative algorithm for obtaining the first stage quasi-least squares esti-

mates of 3, @ and <y could be described as follows:

Step 1: Start with a trial value So.

Step 2: Fix a trial value for o and compute Uy = U(Bo, Y0)-

Step 3: Get the estimate oy minimizing tr (R}l(a) Uy) with respect to a.

Step 4: Compute Vy = V(8o, ao).

Step 5: Get the estimate -y; minimizing tr(Rp'(7) Vo) Qith respect to 7.

Step 6: Repeat Steps 2 through 5 with o = 71, until convergence and obtain (70, a0)-

Step 7: Compute the updated value

n

Br=Po+ [Z Djy =g! Dio] [Z Djy =" i ﬂo)]
i=1

where i = Zi(6o), 6o = (Bo, a0, %), Dio = Di(Bo) and Di(B) = 0ui(B)/0F'. Stop the

iterative procedure if 8; = [y and set B =By, & = ap and § = . Otherwise repeat Steps 2

through 6 with B replaced by ;.

We note that for most of the commonly used correlation structures the second stage in the
quasi-least squares method does not require an iterative procedure, since the estimates can be
obtained in a closed form as shown in the next section.




3 Correlation Structures

Here we consider several popular correlation structures, including the unstructured correlation
for R7(c) and illustrate the method of minimization of tr (R7'(c) Up) needed in Step 3 of the
algorithm. We will also obtain feasible, unique and often closed form solution to the equation
(2.9) for these correlation structures. The structures assumed here for Rr(a) can be assumed
for Rp(7) as well. And the form of the solutions & and & obtained here for o can be used for
obtaining 7 in the algorithm described in Section 2.3 and the solution ¥ for the equation (2.10)

in Section 2.1.

3.1 Equicorrelated Correlation Structure

Suppose that the ¢ repeated measurements are equicorrelated, that is, the correlation structure
Rr(a) is of the form Ry(a) = (1 —a) I+ o J, where I is the identity matrix and J is a matrix
of ones. Since

1 a

o) =gy " aoaare=na

we have

«a

tr(lo) - 1-a)(1+ (- Da)

tr(J Up)

(B @) = G
a ab
T (- (-o)(1+(-1a) (3.17)

where a = tr(Up), b = tr(J Up). Taking derivatives, we can check that the function (3.17) has
a unique point of minimum in the interval (—1/(¢ — 1), 1), given by

—a(t—1) +/b(t — 1) (at — b)
t-1)a(t-1)-b

a=

Also in this case there is a unique solution to the equation (2.9) in the interval (—1/(¢ 1), 1)

and it is given by

@’ (t—-2)+2a
o= a) = — T, 318
@ =r@) =g (318)
We can verify that the function s;(-) is a continuous, one-to-one and onto function on the

interval (—1/(¢t — 1), 1).




3.2 First Order Autoregressive (AR(1)) Correlation Structure

Consider the situation where the correlation between the ¢ repeated measurements decreases
with time. A commonly used correlation structure in this situation is the AR(1) structure,
Rr(a) =[al*7!]. Here

%1(0) = '(—1?12;2—)[1— a01 +a2 02],

where C| is a tridiagonal matrix with 0 on the diagonal and 1 on the lower and upper diagonals
and C = diag(0, 1, ...,1,0). Therefore
1
tr(RpHe) Up) = =) [tr(Up) — atr(Cy Up) + o2 tr(Cs Up))
1

= (T_-_—a—Q)[a—acl + o ¢3), (3.19)

where a = tr(Up), ¢; = tr(C1 Up), and ¢o = tr(Cp Up). We can easily check that (3.19) has a
unique point of minimum in the interval (—1, 1) given by

a+c) —/la+c)?—c?
g lete) c(l 2 e (3.20)

In this case the feasible solution to the equation (2.9) is
_ 2a
C(1+a?)

&= r1(a) (3.21)

The function x;(+) is a continuous and one-to-one and onto function on the interval (-1, 1).
We will use the above estimate @ in the examples discussed in Section 5.

3.3 Tri-Diagonal Structure

Let Rr(a) be a tri-diagonal matrix, that is, the diagonal elements of Rr(ca) are one and all
the elements above and immediately below the diagonal are equal to a and other elements are
zero. Here R;'(c) does not have a closed form but the matrix Rr(a) admits a spectral value
decomposition

Rr(a) = P A(a) P'

where P, the matrix of orthogonal eigen vectors, does not depend on a. See Chaganty (1997),
Example 4.2. Now

tr(R7He)Up) = tr(A~(a) P' Uy P)
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t
=3 B (3.22)
k=11 + 2 cos( i )
t+1

where uy, is the kt* diagonal element of P’ Uy P. It is well known that Ry(«) is positive definite
if and only if « falls in the interval (ai, o¢), where

-1

e
2
cos (7

a; =

We can verify that (3.22) has a unique point of minimum & in the interval (o1, o), which
could be computed numerically. In this case the second stage estimate @ is in a closed form

and is given by

~ ~ _l E%c:l bk
a=r(a)= 9 Zi::l by cos (kw/(t+ 1))
where
cos (km/(t+ 1))
b,

=, (I+2acos(kn/(t+1)))

3.4 Unstructured Correlation matrix

Suppose that the correlation between the t repeated measurements Rr(c) = Rr is an unstruc-
tured positive definite correlation matrix. As shown in Chaganty (1997), the point of minimum
Rr in Step 3 of the algorithm described in Section 2.3, can be obtained recursively starting
with any positive definite diagonal matrix Ag and computing Ay = diag (A,lc/_2 1 Uo A,lf 1)1/ 2
at the kth step and stop the recursive process as soon as Ay =~ Ag_y = A. The matrix
Rr = A2 (AY2 1, A1/2)1/2 A=1/2_ The bias corrected correlation matrix is given by

Rr Ar Ry if Ar>0
Br= (3.23)
(diag (Ug))~Y/2 Uy (diag (Up))~/2 otherwise.

where Ar = diag [(Bp o Rr)~!e] where e is a vector of ones and o denotes the Hadamard
product (see Chaganty and Shults (1999)). Similarly, we can construct an estimate Rp for
Rp(y) = Rp, when it is an unknown unstructured correlation matrix. We will use the estimate

R p in the examples described in Section 5.
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4 Large sample inference

In this section we will study the large sample properties of the quasi-least squares estimates.
We show that the estimates are consistent and asymptotically normal. We also propose a test
statistic for testing a hypothesis concerning the regression parameter and derive it’s asymptotic

distribution.
4.1 Asymptotic distribution

Here we will establish consistency and joint asymptotic normality of the quasi-least squares
estimates. Let # = (B, , v)' be the vector consisting of the regression and the correlation
parameters. Note that the first stage quasi-least squares estimate 6 is the solution of the
equation "™, h;(6) = 0, where h;(8) = (h1i(6), h2:i(6), h3i(9))" and

hi(6) = DUB)AT*(B) (Rr'(a) ® Rp'(7)) ()
-1
o) = (LD 705 7y 20

h3(8) = tr (?_R_;;@ Z;(B) Ry (e) Zf(ﬁ)) .

The expected value of h;(#) does not depend on i and equals

-1 -1 i
v(f) = (0, Ptr (2%(0[—) RT(a)) , ptr (3i6p7(_’7) Rp(~/))> . (4.24)
) _ 1L dhi(6) .
Since E(z;(83)) = 0, we can check that I,,() = - ; E ( 50 ) is of the form
L) 0 0
I.(6) = 0 I22(0) In23(0) |- (4.25)

0 Io3(8) Inss(6)
In the above the three partitions are made according to the dimensions of the three vectors £,

n
o and + respectively. Similarly, we can partition My (0) = %z Cov (h;(9)) as
=1

Mp11(0) Mpi2(6) Myi3(8)
M (0) = | Mp12(8) Mn2a(0) Mnos(6) (4.26)
My13(0) Mpo3(0) Mnss(0)

where My = %E?:l Cov(h;i(6), hxi(0)). We can check that Mp11(0) = ¢ In11(0), where
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Tn® = L 3 D) S O Di(B), (427

It is possible to express the other matrices Mpjx and Ijx in (4.25) and (4.26) as functions of S,
o, v and ¢ explicitly. See Chaganty (1997, page 47) for some details concerning those formulas.
The next theorem establishes the asymptotic normality of the first stage quasi-least squares
estimates. Below we will use the acronym AN for asymptotically normal as in Serfling (1980,

page 20).

THEOREM 4.1 Let 8 = (8, a, v)' be fized. Let 6 = (ﬁ, a, ¥)' be the solution of the equation
n hi(0) = 0. Let M,(0) = M(6) and I,(0) — I(8) as n — oo. Assume that a central
limit theorem holds for the summands h;(0) and they satisfy, as-a function of 0, the regularity

conditions needed for a Taylor series ezpansion to hold. Then

Vi (-6 [16)]7 v(6) = N, [IO)]™" M(©) [I©®)]) (4.28)
as n — 0o, where v(6) is defined in (4.24).

Proof: Since Y ;- hi(g) = 0, using a Taylor series expansion and a standard argument we can
verify that the asymptotic distribution of (5 — ) is same as the asymptotic distribution of

[——EE(ah 0))} [ Zh ] 1,(0)] [%;hi(é))]. (4.29)

Note that E(h;(6)) = v(6) for all 5. Since M, () converges to M (6) and the summands h;(6)
satisfy a central limit theorem, we conclude that

[;1; \Zj h,-(G)] is AN (V(o), M—:ﬂ) (4.30)
1=1

Since I,(#) converges to I(8), from (4.29) and (4.30) we get that

F-0) is AN ([1(0)]-1u(9), U (9)]_1Mr(f’) U (9)]_1) (4.31)

which is equivalent to (4.28). This completes the proof of the theorem. O

Since I(6) is the limit of (4.25), from the above theorem and using (4.24), we can see that the
first stage quasi-least squares estimate B is a consistent estimate of 3, whereas @ and 7 are
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asymptotically biased. To get consistent estimates of a and y we will make a transformation
on 6§, which depends on the structures of the correlation matrices Rr(c) and Rp(y). Let

b(pa 9) = (bl (Ba :3)7 b?(a’ a)’ b3(;7a 7))1 (432)

be a function of 8 = (8, @, 7)' and 8 = (8, e, 7)’, where

bl(ﬁv ﬁ) = B—ﬁ
-1
b(a, a) = tr(a—}?ggl _RT(a)>
-1
bs(7,7) = t(a—R—gA;”—) Rp(v))- (433)
=3

Note that the second stage quasi-least squares estimate is the solution 6= m(a), of the equation
b(g, 6) = 0. The next theorem shows that 8 is a consistent estimate of 8 and asymptotically

normal.

THEOREM 4.2 Let 6 = (8, a, v)' be fized. Let 8 be as in Theorem 4.1 and b(6, 8) be as defined
in (4.32). Assume that the conditions of Theorem 4.1 hold. Let 8= (B, &, 7) be the solution,
say k(0), of the equation b(8, 9) = 0, where k(-) is a continuous function. Then 8 is a consistent
estimate of 0 and \/n (0 — 0) converges in distribution to a normal distribution with mean 0

and covariance matrizc

£(6) = [Vw(6") [1(0)]~ M) [TO)]™" V(6")] (434)

where 6* = 0+[1(9)]"! v(0) and Vk(8*) is O k(0)/06' evaluated at 6 = 6*. Finally, é as defined
in (2.11), is a consistent estimate of ¢.

Proof: From Theorem 4.1, we know that § = (B, &, 7)' converges to 6* = (8*, o*, v*) as
n — oco. Note that 8* = 3. Using the weak law of large numbers, we can check that

U =

ipZ B R @ Z(B) LR ") o) Rele)  (435)

and

?
S

tr(Rz'(e*) Rr(e)) Rp(y).  (4:36)




Taking the limit as n — oo, using (4.35) and (4.36) we get

0
tr(Rp'(v*) Rp(7)) bo(c*, ) (4.37)

tr(Rp! () Rr()) bs(v*, 7)

where the functions b, and b3 are defined in (4.33). Since 8* = §, from (4.37) we can see
that b(6*, §) = 0. Thus 6 = &(0*), and therefore 8 = x(6) converges to §. This establishes
consistency of the second stage quasi-least squares estimate 6. By the delta theorem it follows

1 &, 5
0= lim — .Zlhi(g) =
1=

=93 |-

that v/n (5 — 0) converges in distribution to a normal distribution with mean 0 and covariance
matrix I'(§). Finally consistency of # implies that & is a consistent estimate of ¢. This completes
the proof of the theorem. O

REMARK 4.1 Since My11(8) = ¢ I,11(8), taking limit as n — oo, using (4.27) and Theorem 4.2,
we can see that \/7_1(3 — B) converges to a g-variate normal distribution with mean 0 and
covariance matrix ¢ [C(6)]~!, where

C(9) = lim ZD’ ~1(6) D;(B)] . (4.38)

n—0o0

Thus B is asymptotically an efficient estimator. The same asymptotic property also holds for
the estimate of 3, obtained solving the equation (2.6) after substituting &, ¥ for a and «v
respectively.

4.2 Test of Hypothesis

Suppose that we are interested in testing the null hypothesis K’ 8 = m, where m is a known
s x 1 vector and K is a known q X s matrix of rank s < g. We propose the test statistic

T, =

(K'B ~m) (K'(T7, Di() z; Di(B) " K) (K'B—m) (4.39)

where £; = 5;(8) and & is defined in (2.11). Large values of T;, are considered to be significant.
It can be seen easily from Theorem 4.2 and Remark 4.1 that, under the above null hypothesis,
T,, converges to a central x? with s degrees of freedom. We will use the test statistic T, to test
various hypothesis in the examples considered in Section 5.
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5 Examples

To illustrate the estimation of the regression and various correlation and scale parameters
(by implementing the algorithm described in Section 2.3) and to perform certain hypotheses
testing, in this section we present the analyses of two real life data sets. Both the examples
have three response variables measured over three time periods. For both the examples we
have fit general correlation structure for the three response variables and an AR(1) structure
for the measurements observed over the three time periods. In the first example there is only
one group, whereas in the second there are two groups. '

5.1 AIDS Data

Here we consider the data set given in Table 1 of Thompson (1991). Twenty seven patients were
involved in a pilot study where a new drug was being tested for treating AIDS. Measurements
on three variables (p = 3): TMHR score, Karofsky score, and T-4 cell count, were observed on
each of the 27 (n = 27) patients at three time periods (¢ = 3), in the beginning, 90 days after
the treatment, and 180 days after the treatment. We fit a regression model for these data with
the correlation structure [Rr(c) ® Rp(7)], where Rr(a) is the matrix of AR(1) correlation
structure and Rp(7y) = Rp is the unstructured correlation matrix. In order to achieve this that
the variance of each variable is approximately equal, we divide each response variable by its
sample standard deviation (actually a value close to it). For the present example, we divided
the observations corresponding to each of the three variables respectively by 2.4, 12.6, and
276.0. Interest is to test the effect of the drug over time. Hence the null hypothesis we want
to test is that there is no effect over time for each of the three variables. As a preparation for
testing this hypothesis, suppose y;jx is the observation on the jth variable taken at the kth
time period corresponding to the ith individual. Then consider the model

E(yijk) = pjx, 3=1,2,3; k=1,2,3; and 1 =1,...,27.

or E(y;) = Xif = p, where y; = (yi11, Yi21, ¥ia1, -, %i33)’ and p = (p11, p21, -, 432, p33)’- Then
the parameter estimates obtained using our algorithm are: -

i = (2.1836,6.3198,1.1770, 0.8488, 7.3486, 1.2093, 0.9259, 7.6426, 1.0645)’,

R 1.0000 -0.5124 -—0.4687 R
Rp=| —0.5124 1.0000 0.4700 |, & =0.6696, and ¢ = 0.8760.
—0.4687  0.4700  1.0000

The null hypothesis of interest then can be expressed as
Ho LR = B2 = 3, for allj = 1,2,3.
or Hy: K'u =0, with
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To test Hy we use the test statistic (4.39) and the observed value of this is 161.1373. The
P-value using the chi-square distribution with 6 degrees of freedom is 0.0000. Thus rejecting
the null hypothesis.

Next we want to see whether the change in the patient’s condition occurred during the
first 90 days and/or the second 90 days. For that we test the two hypotheses Hp : Kipu =0
and Hy : Ky = 0, where

1 00 -1 0O 0 O0O0O
Ki={0 10 0 -1 0 00O
0 01 0 0 -1 000
and
000100 -1 0 O
Ki=|000010 0-1 0
0 00 O0O01 0O 0 -1

The test statistic for the first 90 days is 140.3697 with a P-value using the chi-square
approximation on three degrees of freedom is 0.0000. The test statistic for the second 90 days
is 11.7403 with a P-value of 0.0083. Thus our analysis shows a significant change in both the
time periods. It is easy to check by performing these analyses for each variable separately that
there is no significant change in T-4 cell counts in any one of the two time periods, there is a
significant change in TMHR score in the first 90 days time period only, and there is a signiﬁcant
change in Karofsky score in both the time periods.

One last thing we want to determine in this analysis is whether the change detected is in
the right direction. For an improving patient the TMHR score should decrease, the Karofsky
score should increase and the T-4 cell count should increase as well. For determining this we

fit the following linear model for the mean:
Bik = ﬂOJ +,31j(13, r=123 and j=1,2,3.

For an improving patient we want 811 < 0, 812 > 0 and B3 > 0. Fitting this model yields ﬁu =
—0.6289 < 0, Blg = 0.6614 > 0, which have the correct signs for indicating an improvement.
However, ,513 = —0.0562 < 0, indicating that the improvement is not in the correct direction.
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But as mentioned above, an analysis of T-4 cell counts had shown that there is no significant
change in this cell counts. Since this was an experimental drug, it is possible that it was not

effective in controlling the AIDS virus, from all perspective.

5.2 Zullo’s Dental Data

To further illustrate testing of various hypotheses, we use Zullo’s dental data appeared in
Table 7.2 of Timm (1980). These data were also analyzed by Naik and Rao (1997) assuming
a Kronecker product structured covariance matrix for the covariance between the observations
on an individual, but using maximum likelihood theory.

The study was concerned with the relative effectiveness of two orthopedic adjustments
of the mandible. Nine subjects were assigned to each of the two orthopedic treatments, say T}
and T (g = 2,n; = 9,ny = 9), called activator treatments. The measurements were made on
three characteristics (p = 3), namely, SOr-Me (in mm), ANS-Me (in mm), and Pal-MP angle
(in degrees) to assess the changes in the vertical position of the mandible at three time points
(t = 3) of activator treatment. The three null hypotheses of interest are: there is no group and
time interaction, there is no group effect and there is no time effect.

Suppose y;jk: is the observation on the kth variable at the Ith occasion corresponding
to the ith individual in the jth group. We assume the following model for the expected value
E(yijr1) = pjki

Pjkl = vaTy + groupji + timeg + (group * time) j.
To express the above model in the standard form as E(y;) = X;0, we first divide the observa-
tions corresponding to the three variables, SOr-Me, ANS-Me, and Pal-MP angle by 7.34, 4.76,
and 5.56 respectively. Next we define the following dummy variables:

S 1 if the observation is on variable 1
v1 7} 0 otherwise,

A 1 if the observation is on variable 2
v2 0 otherwise, and

T = 1 if the observation is on variable 3
v3 7] 0 otherwise.
The coefficient of each of these in the model will represent the unstructured mean of that

variable. Next let

T = 1 if the observation is from group T> and
97 ) —1if it is from T;.

Testing that the coefficient of z4 in the model is zero will test the hypothesis that there is no
group effect. To test for the time effect, let

1 if the time period is two
z4 = { -1 if the time period is one
0 otherwise, and
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1 if the time period is three
zp = { —1 if the time period is one
0 otherwise.
Now the null hypothesis of no time effect is same as testing that the regression coefficients
corresponding to 4 and x4 are simultaneously zero. Finally, the no interaction hypothesis
can be tested by testing that the regression coefficients corresponding to the products z, * z4
and z 4%z are zero. The estimates of the parameters corresponding to these eight independent

variables are
E = (16.7591,13.6798,4.4253, 0.0385,0.1674,0.1105, —0.0032,0.0009)'.

With the assumption Cov(y;) = ¢(Rr(a) ® Rp(y)), where Rr(a) is the matrix of AR(1)
correlation structure and Rp(y) = Rp is the unstructured correlation matrix, the estimates of
the correlation parameters are:

R 1.0000 0.7478 0.0264 R
Rp=| 0.7478 1.0000 0.3364 |, @ =0.9381, and ¢ = 0.9678.
0.0264 0.3364 1.0000

The value of the test statistic for testing no interaction is 0.0136, indicating no interaction
between the treatment groups and the time period. Similarly test for testing no group effect
also showed no significance with a value of test statistic to be 0.4861. Only time effect is
significant with test statistic value 23.8208 and the corresponding P-value based on chi-square
distribution with two degrees of freedom is 0.0001.

6 Concluding Remarks

In this paper we discussed the analysis of multivariate repeated measures data assuming that
the covariance matrix of the repeated measurements on each subject is a scale multiple of
Kronecker product of two correlation matrices. The method used is the quasi-least squares,
which does not make any assumptions on the distribution of the random errors except for the
existence of the first two moments. We have suggested an algorithm for computing the estimates
for finite samples. And proved consistency and asymptotic normality of the estimators for large
samples and suggested tests for testing any linear hypothesis. Finally we have implemented
these results on two real life data sets. Since the quasi-least squares method uses the solution
for a set of best (optimal if the data are normal) unbiased estimating equations, it is one of the
best procedures for analyzing these data without making any distributional assumptions.
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